Compare commits
7 Commits
f709c11d00
...
#3-Analiza
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
fb9da812de | ||
|
|
a1ddb05402 | ||
|
|
60a7959e0d | ||
|
|
530f83f77b | ||
|
|
ccb389c446 | ||
|
|
c750d61a0a | ||
|
|
c3c3eed46e |
@@ -746,5 +746,6 @@ function exportToCSVFile($res, $fullpath, array $headers = null, $delimiter = ';
|
||||
}
|
||||
|
||||
fclose($fp);
|
||||
return ['ok'=>true, 'path'=>$fullpath, 'rows'=>$count, 'error'=>null];
|
||||
$chmod_ok = @chmod($fullpath, 0664);
|
||||
return ['ok'=>true, 'path'=>$fullpath, 'rows'=>$count, 'chmod'=>$chmod_ok, 'error'=>null];
|
||||
}
|
||||
713
modules/EcmInvoiceOuts/ai/analysisAI.py
Normal file
713
modules/EcmInvoiceOuts/ai/analysisAI.py
Normal file
@@ -0,0 +1,713 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
"""
|
||||
analysisAI.py — pobiera dane z MySQL, liczy wyłącznie WSKAZANE preagregaty,
|
||||
renderuje HTML i (opcjonalnie) dodaje analizę AI — tylko jeśli ją zaznaczysz.
|
||||
|
||||
Parametry CLI (z formularza PHP):
|
||||
--date-from YYYY-MM-DD
|
||||
--date-to YYYY-MM-DD (zamieniane wewnętrznie na +1 dzień, bo SQL ma warunek '< date_to')
|
||||
--metric NAZWA (można podać wiele razy: --metric a --metric b ...)
|
||||
--metrics CSV (opcjonalnie alternatywnie: --metrics a,b,c)
|
||||
--ai true|false (czy uruchomić analizę AI — tylko gdy są preagregaty z danymi)
|
||||
|
||||
Preagregaty:
|
||||
- kpis (aliasy: basic, basic_totals) — podstawowe KPI: sprzedaż, ilość, dokumenty, ASP
|
||||
- daily_sales, product_summary, customer_summary, product_daily,
|
||||
top10_products_by_sales, top10_customers_by_sales (z preaggregates.py)
|
||||
"""
|
||||
|
||||
import os, sys, json, math, time, warnings, argparse, traceback, html
|
||||
from datetime import date, timedelta, datetime
|
||||
|
||||
# (1) Wycisza ostrzeżenia urllib3 (LibreSSL / stary OpenSSL)
|
||||
try:
|
||||
from urllib3.exceptions import NotOpenSSLWarning
|
||||
warnings.filterwarnings("ignore", category=NotOpenSSLWarning)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
# (2) Importy zewnętrzne
|
||||
import requests
|
||||
import mysql.connector
|
||||
import pandas as pd
|
||||
|
||||
LOOKER_URL = "https://lookerstudio.google.com/u/0/reporting/107d4ccc-e7eb-4c38-8dce-00700b44f60e/page/ba1YF"
|
||||
|
||||
# ========== KONFIGURACJA KLUCZA AI ==========
|
||||
API_KEY = "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"
|
||||
API_KEY_HARDCODE = API_KEY
|
||||
|
||||
# === Import preagregatów ===
|
||||
from preaggregates import serialize_for_ai
|
||||
import preaggregates as pre # pre.AGGREGATORS, pre.to_df
|
||||
|
||||
# ========== UTILKI ==========
|
||||
|
||||
def html_fatal(msg, title="Błąd"):
|
||||
sys.stdout.write(
|
||||
'<div style="font-family:system-ui,-apple-system,Segoe UI,Roboto,Arial,sans-serif;'
|
||||
'max-width:900px;margin:24px auto;padding:16px 20px;border:1px solid #fecaca;'
|
||||
'border-radius:12px;background:#fff5f5;color:#991b1b;">'
|
||||
f'<h3 style="margin:0 0 8px;font-size:18px;">{html.escape(title)}</h3>'
|
||||
f'<pre style="white-space:pre-wrap;margin:0;">{html.escape(msg)}</pre>'
|
||||
'</div>'
|
||||
)
|
||||
sys.exit(1)
|
||||
|
||||
def connect_html_or_die(cfg, label="MySQL"):
|
||||
try:
|
||||
return mysql.connector.connect(**cfg)
|
||||
except mysql.connector.Error as e:
|
||||
host = cfg.get("host"); port = cfg.get("port"); user = cfg.get("user")
|
||||
base = (f"[{label}] Błąd połączenia ({host}:{port} jako '{user}').\n"
|
||||
f"errno={getattr(e,'errno',None)} sqlstate={getattr(e,'sqlstate',None)}\n"
|
||||
f"msg={getattr(e,'msg',str(e))}")
|
||||
if os.environ.get("DEBUG"):
|
||||
base += "\n\n" + traceback.format_exc()
|
||||
html_fatal(base, title="Błąd połączenia MySQL")
|
||||
|
||||
def getenv(k, d=None):
|
||||
return os.environ.get(k, d)
|
||||
|
||||
def last_full_month_bounds():
|
||||
today_first = date.today().replace(day=1)
|
||||
to_dt = today_first
|
||||
prev_last = today_first - timedelta(days=1)
|
||||
from_dt = prev_last.replace(day=1)
|
||||
return from_dt.isoformat(), to_dt.isoformat()
|
||||
|
||||
def add_one_day(iso_date):
|
||||
try:
|
||||
return (datetime.strptime(iso_date, "%Y-%m-%d") + timedelta(days=1)).strftime("%Y-%m-%d")
|
||||
except Exception:
|
||||
return iso_date # w razie czego oddaj wejście
|
||||
|
||||
def safe_num(v, ndigits=None):
|
||||
try:
|
||||
f = float(v)
|
||||
if not math.isfinite(f):
|
||||
return None
|
||||
return round(f, ndigits) if ndigits is not None else f
|
||||
except Exception:
|
||||
return None
|
||||
|
||||
def safe_date(v):
|
||||
if v is None:
|
||||
return None
|
||||
try:
|
||||
if hasattr(v, "date"):
|
||||
return str(v.date())
|
||||
s = str(v)
|
||||
if len(s) >= 10 and s[4] == '-' and s[7] == '-':
|
||||
return s[:10]
|
||||
return s
|
||||
except Exception:
|
||||
return None
|
||||
|
||||
def fmt_money(v):
|
||||
try:
|
||||
return "{:,.2f}".format(float(v)).replace(",", " ").replace(".", ",")
|
||||
except Exception:
|
||||
return str(v)
|
||||
|
||||
def compact_table(table, limit=30):
|
||||
out = []
|
||||
if not table:
|
||||
return out
|
||||
lim = int(limit)
|
||||
for i, row in enumerate(table):
|
||||
if i >= lim: break
|
||||
new = {}
|
||||
for k, v in row.items():
|
||||
if isinstance(v, float):
|
||||
new[k] = round(v, 6) if math.isfinite(v) else None
|
||||
else:
|
||||
new[k] = v
|
||||
out.append(new)
|
||||
return out
|
||||
|
||||
def call_openai_chat(api_key, model, system_prompt, user_payload_json,
|
||||
temperature=0.3, connect_timeout=10, read_timeout=90, max_retries=3):
|
||||
url = "https://api.openai.com/v1/chat/completions"
|
||||
headers = {"Authorization": "Bearer " + api_key, "Content-Type": "application/json"}
|
||||
body = {
|
||||
"model": model,
|
||||
"messages": [
|
||||
{"role": "system", "content": system_prompt},
|
||||
{"role": "user", "content": "Dane (JSON):\n\n" + user_payload_json},
|
||||
],
|
||||
"temperature": temperature,
|
||||
}
|
||||
last_err = None
|
||||
for attempt in range(1, int(max_retries) + 1):
|
||||
try:
|
||||
r = requests.post(url, headers=headers, json=body, timeout=(connect_timeout, read_timeout))
|
||||
if 200 <= r.status_code < 300:
|
||||
data = r.json()
|
||||
return data.get("choices", [{}])[0].get("message", {}).get("content", "")
|
||||
last_err = RuntimeError("OpenAI HTTP {}: {}".format(r.status_code, r.text))
|
||||
except requests.exceptions.RequestException as e:
|
||||
last_err = e
|
||||
time.sleep(min(2 ** attempt, 10))
|
||||
raise RuntimeError("OpenAI request failed: {}".format(last_err))
|
||||
|
||||
def html_table(records, title=None, max_rows=20):
|
||||
if not records:
|
||||
return '<div class="empty">Brak danych</div>'
|
||||
cols = list(records[0].keys())
|
||||
body_rows = records[:max_rows]
|
||||
thead = "".join("<th>{}</th>".format(c) for c in cols)
|
||||
trs = []
|
||||
for r in body_rows:
|
||||
tds = []
|
||||
for c in cols:
|
||||
val = r.get(c, "")
|
||||
if isinstance(val, (int, float)):
|
||||
if any(x in c.lower() for x in ("sales", "total", "netto", "value", "asp", "qty", "quantity", "share", "change")):
|
||||
tds.append('<td class="num">{}</td>'.format(fmt_money(val) if "sales" in c.lower() or "total" in c.lower() or "netto" in c.lower() else val))
|
||||
else:
|
||||
tds.append('<td class="num">{}</td>'.format(val))
|
||||
else:
|
||||
tds.append('<td>{}</td>'.format(val))
|
||||
trs.append("<tr>{}</tr>".format("".join(tds)))
|
||||
cap = '<div class="tbl-title">{}</div>'.format(title) if title else ""
|
||||
return (
|
||||
cap +
|
||||
'<div class="tbl-wrap"><table class="tbl">'
|
||||
'<thead><tr>{}</tr></thead><tbody>{}</tbody></table></div>'.format(thead, "".join(trs))
|
||||
)
|
||||
|
||||
def render_report_html(period_label, kpis, parts, ai_section, model_alias):
|
||||
css = (
|
||||
"font-family:system-ui,-apple-system,Segoe UI,Roboto,Arial,sans-serif;"
|
||||
"max-width:1200px;margin:24px auto;padding:16px 20px;border:1px solid #e5e7eb;"
|
||||
"border-radius:12px;background:#fff;color:#111827"
|
||||
)
|
||||
kpi_item = (
|
||||
'<div class="kpi"><div class="kpi-label">{label}</div>'
|
||||
'<div class="kpi-value">{value}</div></div>'
|
||||
)
|
||||
kpi_html = "".join(kpi_item.format(label=lbl, value=val) for (lbl, val) in kpis)
|
||||
sections_html = "".join(parts)
|
||||
if ai_section and not ai_section.lstrip().startswith("<div"):
|
||||
ai_section = '<div class="ai-section">{}</div>'.format(ai_section)
|
||||
|
||||
return f"""
|
||||
<div style="{css}">
|
||||
<h2 style="margin:0 0 12px;font-size:22px;">Raport sprzedaży — {period_label}</h2>
|
||||
<div style="display:grid;grid-template-columns:repeat(4,minmax(0,1fr));gap:12px;margin:12px 0 20px;">
|
||||
{kpi_html}
|
||||
</div>
|
||||
{sections_html if sections_html.strip() else '<div class="empty">Nie wybrano żadnych preagregatów — brak sekcji do wyświetlenia.</div>'}
|
||||
<div style="margin-top:20px;border-top:1px solid #e5e7eb;padding-top:16px;">
|
||||
<h3 style="margin:0 0 8px;font-size:18px;">Analiza i rekomendacje{(' (AI · ' + model_alias + ')') if model_alias else ''}</h3>
|
||||
{ai_section if ai_section else '<div style="color:#6b7280">Analiza AI wyłączona lub brak danych.</div>'}
|
||||
</div>
|
||||
|
||||
<!-- STOPKA z linkiem do Looker Studio -->
|
||||
<div style="margin-top:20px;border-top:1px dashed #e5e7eb;padding-top:12px;display:flex;justify-content:flex-end;">
|
||||
<a href="{LOOKER_URL}" target="_blank" rel="noopener"
|
||||
style="text-decoration:none;padding:8px 12px;border:1px solid #d1d5db;border-radius:8px;
|
||||
background:#f9fafb;color:#111827;font-weight:600;">
|
||||
→ Otwórz pełny raport w Looker Studio
|
||||
</a>
|
||||
</div>
|
||||
</div>
|
||||
<style>
|
||||
.kpi {{background:#f8fafc;border:1px solid #e5e7eb;border-radius:10px;padding:12px;}}
|
||||
.kpi-label {{font-size:12px;color:#6b7280;margin-bottom:4px;}}
|
||||
.kpi-value {{font-size:18px;font-weight:700;}}
|
||||
.tbl-title {{font-weight:600;margin:16px 0 8px;font-size:15px;}}
|
||||
.tbl-wrap {{overflow-x:auto;border:1px solid #e5e7eb;border-radius:8px;}}
|
||||
.tbl {{border-collapse:collapse;width:100%;font-size:14px;}}
|
||||
.tbl thead th {{text-align:left;background:#f3f4f6;padding:8px;border-bottom:1px solid #e5e7eb;white-space:nowrap;}}
|
||||
.tbl tbody td {{padding:8px;border-bottom:1px solid #f3f4f6;vertical-align:top;}}
|
||||
.tbl td.num {{text-align:right;white-space:nowrap;}}
|
||||
.empty {{color:#6b7280;font-style:italic;margin:8px 0;}}
|
||||
.ai-section {{background:#f8fafc;border:1px solid #e5e7eb;border-radius:10px;padding:12px;}}
|
||||
</style>
|
||||
"""
|
||||
|
||||
|
||||
# ========== UPSerTY DO REPORTING (jak u Ciebie) ==========
|
||||
|
||||
def _ensure_rank_and_share(items, key_sales="sales"):
|
||||
if not items: return
|
||||
total_sales = sum((x.get(key_sales) or 0) for x in items)
|
||||
sorted_items = sorted(
|
||||
items,
|
||||
key=lambda x: ((x.get(key_sales) or 0), str(x.get("product_code") or x.get("customer_name") or "")),
|
||||
reverse=True
|
||||
)
|
||||
rank_map, rank = {}, 1
|
||||
for x in sorted_items:
|
||||
key = x.get("product_code") or x.get("customer_name") or ""
|
||||
if key not in rank_map:
|
||||
rank_map[key] = rank
|
||||
rank += 1
|
||||
for x in items:
|
||||
key = x.get("product_code") or x.get("customer_name") or ""
|
||||
if not x.get("rank_in_period"):
|
||||
x["rank_in_period"] = rank_map.get(key, 0)
|
||||
if "mix_share_sales" not in x:
|
||||
x["mix_share_sales"] = ((x.get(key_sales) or 0) / total_sales) if total_sales else 0.0
|
||||
|
||||
def upsert_daily_sales(cur, daily):
|
||||
if not daily: return 0
|
||||
sql = """
|
||||
INSERT INTO reporting_daily_sales
|
||||
(period_date, qty, sales, docs, asp, sales_rolling7, sales_dod_pct)
|
||||
VALUES (%s,%s,%s,%s,%s,%s,%s)
|
||||
ON DUPLICATE KEY UPDATE
|
||||
qty=VALUES(qty), sales=VALUES(sales), docs=VALUES(docs),
|
||||
asp=VALUES(asp), sales_rolling7=VALUES(sales_rolling7), sales_dod_pct=VALUES(sales_dod_pct),
|
||||
generated_at=CURRENT_TIMESTAMP
|
||||
"""
|
||||
rows = []
|
||||
for r in daily:
|
||||
period_date = safe_date(r.get("register_date") or r.get("period_date") or r.get("date"))
|
||||
rows.append((
|
||||
period_date,
|
||||
safe_num(r.get("qty")),
|
||||
safe_num(r.get("sales")),
|
||||
safe_num(r.get("docs")),
|
||||
safe_num(r.get("asp"), 6),
|
||||
safe_num(r.get("sales_rolling7"), 6),
|
||||
safe_num(r.get("sales_pct_change_dod") or r.get("sales_dod_pct"), 6),
|
||||
))
|
||||
cur.executemany(sql, rows)
|
||||
return len(rows)
|
||||
|
||||
def upsert_product_summary(cur, prod, period_from, period_to):
|
||||
if not prod: return 0
|
||||
_ensure_rank_and_share(prod, key_sales="sales")
|
||||
sql = """
|
||||
INSERT INTO reporting_product_summary
|
||||
(period_start, period_end, product_code, product_name, qty, sales, docs,
|
||||
asp_weighted, mix_share_sales, rank_in_period)
|
||||
VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)
|
||||
ON DUPLICATE KEY UPDATE
|
||||
qty=VALUES(qty), sales=VALUES(sales), docs=VALUES(docs),
|
||||
asp_weighted=VALUES(asp_weighted), mix_share_sales=VALUES(mix_share_sales),
|
||||
rank_in_period=VALUES(rank_in_period), generated_at=CURRENT_TIMESTAMP
|
||||
"""
|
||||
rows = []
|
||||
for r in prod:
|
||||
rows.append((
|
||||
period_from, period_to,
|
||||
r.get("product_code"), r.get("product_name"),
|
||||
safe_num(r.get("qty")),
|
||||
safe_num(r.get("sales")),
|
||||
safe_num(r.get("docs")),
|
||||
safe_num(r.get("asp_weighted"), 6),
|
||||
safe_num(r.get("mix_share_sales"), 6),
|
||||
int(r.get("rank_in_period") or 0),
|
||||
))
|
||||
cur.executemany(sql, rows)
|
||||
return len(rows)
|
||||
|
||||
def upsert_customer_summary(cur, cust, period_from, period_to):
|
||||
if not cust: return 0
|
||||
_ensure_rank_and_share(cust, key_sales="sales")
|
||||
sql = """
|
||||
INSERT INTO reporting_customer_summary
|
||||
(period_start, period_end, customer_name, qty, sales, docs,
|
||||
asp_weighted, mix_share_sales, rank_in_period)
|
||||
VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s)
|
||||
ON DUPLICATE KEY UPDATE
|
||||
qty=VALUES(qty), sales=VALUES(sales), docs=VALUES(docs),
|
||||
asp_weighted=VALUES(asp_weighted), mix_share_sales=VALUES(mix_share_sales),
|
||||
rank_in_period=VALUES(rank_in_period), generated_at=CURRENT_TIMESTAMP
|
||||
"""
|
||||
rows = []
|
||||
for r in cust:
|
||||
rows.append((
|
||||
period_from, period_to,
|
||||
r.get("customer_name"),
|
||||
safe_num(r.get("qty")),
|
||||
safe_num(r.get("sales")),
|
||||
safe_num(r.get("docs")),
|
||||
safe_num(r.get("asp_weighted"), 6),
|
||||
safe_num(r.get("mix_share_sales"), 6),
|
||||
int(r.get("rank_in_period") or 0),
|
||||
))
|
||||
cur.executemany(sql, rows)
|
||||
return len(rows)
|
||||
|
||||
def upsert_product_daily(cur, prod_daily):
|
||||
if not prod_daily: return 0
|
||||
sql = """
|
||||
INSERT INTO reporting_product_daily
|
||||
(period_date, product_code, product_name, qty, sales, asp)
|
||||
VALUES (%s,%s,%s,%s,%s,%s)
|
||||
ON DUPLICATE KEY UPDATE
|
||||
qty=VALUES(qty), sales=VALUES(sales), asp=VALUES(asp),
|
||||
generated_at=CURRENT_TIMESTAMP
|
||||
"""
|
||||
rows = []
|
||||
for r in prod_daily:
|
||||
period_date = safe_date(r.get("register_date") or r.get("period_date") or r.get("date"))
|
||||
qty = safe_num(r.get("qty"))
|
||||
sales = safe_num(r.get("sales"))
|
||||
asp = safe_num((sales / qty) if (qty and sales is not None and qty != 0) else r.get("asp"), 6)
|
||||
rows.append((
|
||||
period_date,
|
||||
r.get("product_code"),
|
||||
r.get("product_name"),
|
||||
qty, sales, asp
|
||||
))
|
||||
cur.executemany(sql, rows)
|
||||
return len(rows)
|
||||
|
||||
# ========== ARGPARSE & LOGIKA WYBORU ==========
|
||||
|
||||
def parse_cli_args():
|
||||
p = argparse.ArgumentParser()
|
||||
p.add_argument('--date-from', dest='date_from', required=False, help='YYYY-MM-DD')
|
||||
p.add_argument('--date-to', dest='date_to', required=False, help='YYYY-MM-DD (inclusive, we add +1 day internally)')
|
||||
# akceptuj obie formy: wielokrotne --metric oraz (opcjonalnie) --metrics CSV
|
||||
p.add_argument('--metric', dest='metric', action='append', default=[], help='Nazwa preagregatu; można podać wiele razy')
|
||||
p.add_argument('--metrics', dest='metrics', action='append', default=[], help='CSV: a,b,c (można podać wiele razy)')
|
||||
p.add_argument('--ai', dest='ai', choices=['true','false'], default='false')
|
||||
return p.parse_args()
|
||||
|
||||
def collect_metric_names(args):
|
||||
names = []
|
||||
# z --metric (powtarzalne)
|
||||
if args.metric:
|
||||
names.extend([s.strip() for s in args.metric if s and s.strip()])
|
||||
# z --metrics (może być kilka wystąpień; każde może być CSV)
|
||||
for entry in (args.metrics or []):
|
||||
if not entry:
|
||||
continue
|
||||
for part in str(entry).replace(';', ',').replace(' ', ',').split(','):
|
||||
part = part.strip()
|
||||
if part:
|
||||
names.append(part)
|
||||
# aliasy dla kpis
|
||||
alias_map = {'basic': 'kpis', 'basic_totals': 'kpis'}
|
||||
names = [alias_map.get(n, n) for n in names]
|
||||
# deduplikacja z zachowaniem kolejności
|
||||
seen = set()
|
||||
uniq = []
|
||||
for n in names:
|
||||
if n not in seen:
|
||||
seen.add(n)
|
||||
uniq.append(n)
|
||||
return uniq
|
||||
|
||||
def compute_selected_preaggs(rows, names):
|
||||
"""
|
||||
Liczy TYLKO wskazane preagregaty. ZAWSZE zwraca DataFrame'y (nigdy listy).
|
||||
Obsługuje pseudo-agregat 'kpis' (podstawowe KPI).
|
||||
"""
|
||||
results = {}
|
||||
if not names:
|
||||
return results
|
||||
df = pre.to_df(rows)
|
||||
|
||||
# kpis — pseudoagregat
|
||||
def compute_kpis_df(dfx):
|
||||
if dfx is None or dfx.empty:
|
||||
return pd.DataFrame([{
|
||||
"total_sales": 0.0,
|
||||
"total_qty": 0.0,
|
||||
"total_docs": 0,
|
||||
"asp": None,
|
||||
}])
|
||||
total_sales = float(dfx["total_netto"].sum())
|
||||
total_qty = float(dfx["quantity"].sum())
|
||||
total_docs = int(dfx["document_no"].nunique())
|
||||
asp = (total_sales / total_qty) if total_qty else None
|
||||
return pd.DataFrame([{
|
||||
"total_sales": total_sales,
|
||||
"total_qty": total_qty,
|
||||
"total_docs": total_docs,
|
||||
"asp": asp,
|
||||
}])
|
||||
|
||||
for name in names:
|
||||
if name == 'kpis':
|
||||
results[name] = compute_kpis_df(df)
|
||||
continue
|
||||
|
||||
fn = pre.AGGREGATORS.get(name)
|
||||
if not fn:
|
||||
results[name] = pd.DataFrame() # nieznany agregat -> pusty
|
||||
continue
|
||||
try:
|
||||
out = fn(df)
|
||||
if out is None:
|
||||
results[name] = pd.DataFrame()
|
||||
elif hasattr(out, "copy"):
|
||||
results[name] = out.copy()
|
||||
else:
|
||||
results[name] = pd.DataFrame(out)
|
||||
except Exception:
|
||||
# np. top10_* na pustych danych -> zwróć pusty wynik
|
||||
results[name] = pd.DataFrame()
|
||||
|
||||
return results
|
||||
|
||||
def sanitize_serialized(serialized_dict):
|
||||
"""
|
||||
Jeśli jakikolwiek agregat zwrócił błąd (np. _error), zamieniamy na pustą listę.
|
||||
"""
|
||||
clean = {}
|
||||
for k, records in (serialized_dict or {}).items():
|
||||
if not records:
|
||||
clean[k] = []
|
||||
continue
|
||||
if isinstance(records, list) and isinstance(records[0], dict) and ('_error' in records[0]):
|
||||
clean[k] = []
|
||||
else:
|
||||
clean[k] = records
|
||||
return clean
|
||||
|
||||
def has_any_rows(serialized_dict):
|
||||
for records in (serialized_dict or {}).values():
|
||||
if records: # lista niepusta
|
||||
return True
|
||||
return False
|
||||
|
||||
# ========== MAIN ==========
|
||||
|
||||
def main():
|
||||
# --- CLI ---
|
||||
args = parse_cli_args()
|
||||
with_ai = (args.ai == 'true')
|
||||
metric_names = collect_metric_names(args)
|
||||
|
||||
# --- Daty: preferuj CLI; 'date_to' inkluzywne (dodajemy +1 dzień dla SQL '<') ---
|
||||
if args.date_from and args.date_to:
|
||||
period_from, period_to = args.date_from, add_one_day(args.date_to)
|
||||
shown_label = "{} .. {}".format(args.date_from, args.date_to)
|
||||
else:
|
||||
env_from, env_to = getenv("PERIOD_FROM"), getenv("PERIOD_TO")
|
||||
if env_from and env_to:
|
||||
period_from, period_to = env_from, env_to
|
||||
# label dla czytelności: to-1d
|
||||
try:
|
||||
to_label = (datetime.strptime(period_to, "%Y-%m-%d") - timedelta(days=1)).strftime("%Y-%m-%d")
|
||||
except Exception:
|
||||
to_label = period_to
|
||||
shown_label = "{} .. {}".format(period_from, to_label)
|
||||
else:
|
||||
period_from, period_to = last_full_month_bounds()
|
||||
# label: poprzedni pełny miesiąc
|
||||
try:
|
||||
to_label = (datetime.strptime(period_to, "%Y-%m-%d") - timedelta(days=1)).strftime("%Y-%m-%d")
|
||||
except Exception:
|
||||
to_label = period_to
|
||||
shown_label = "{} .. {}".format(period_from, to_label)
|
||||
|
||||
# --- DB ---
|
||||
cfg = {
|
||||
"host": getenv("MYSQL_HOST", "twinpol-mysql56"),
|
||||
"user": getenv("MYSQL_USER", "root"),
|
||||
"password": getenv("MYSQL_PASSWORD", "rootpassword"),
|
||||
"database": getenv("MYSQL_DATABASE", "preDb_0dcc87940d3655fa574b253df04ca1c3"),
|
||||
"port": int(getenv("MYSQL_PORT", "3306")),
|
||||
}
|
||||
invoice_type = getenv("INVOICE_TYPE", "normal")
|
||||
|
||||
# --- SQL -> rows (UWZGLĘDNIJ DATY; typ wg ENV) ---
|
||||
try:
|
||||
cnx = mysql.connector.connect(**cfg)
|
||||
cur = cnx.cursor()
|
||||
if invoice_type:
|
||||
cur.execute(
|
||||
"""
|
||||
SELECT i.document_no,
|
||||
i.parent_name,
|
||||
DATE(i.register_date) AS register_date,
|
||||
ii.code,
|
||||
ii.name,
|
||||
ii.quantity,
|
||||
ii.total_netto
|
||||
FROM ecminvoiceoutitems AS ii
|
||||
JOIN ecminvoiceouts AS i ON i.id = ii.ecminvoiceout_id
|
||||
WHERE i.register_date >= %s
|
||||
AND i.register_date < %s
|
||||
AND i.type = %s
|
||||
""",
|
||||
(period_from, period_to, invoice_type),
|
||||
)
|
||||
else:
|
||||
cur.execute(
|
||||
"""
|
||||
SELECT i.document_no,
|
||||
i.parent_name,
|
||||
DATE(i.register_date) AS register_date,
|
||||
ii.code,
|
||||
ii.name,
|
||||
ii.quantity,
|
||||
ii.total_netto
|
||||
FROM ecminvoiceoutitems AS ii
|
||||
JOIN ecminvoiceouts AS i ON i.id = ii.ecminvoiceout_id
|
||||
WHERE i.register_date >= %s
|
||||
AND i.register_date < %s
|
||||
""",
|
||||
(period_from, period_to),
|
||||
)
|
||||
rows = cur.fetchall()
|
||||
cur.close()
|
||||
cnx.close()
|
||||
except Exception as e:
|
||||
html_fatal(str(e), title="Błąd połączenia/zapytania MySQL")
|
||||
|
||||
# --- LICZ TYLKO WYBRANE PREAGREGATY (w tym pseudo 'kpis') ---
|
||||
results = {}
|
||||
serialized = {}
|
||||
if metric_names:
|
||||
results = compute_selected_preaggs(rows, metric_names)
|
||||
serialized = serialize_for_ai(results)
|
||||
serialized = sanitize_serialized(serialized) # usuń ewentualne _error -> traktuj jako puste
|
||||
else:
|
||||
serialized = {}
|
||||
|
||||
# --- ZAPIS do reporting (tylko to, co faktycznie policzyłeś) ---
|
||||
try:
|
||||
if serialized:
|
||||
rep_cfg = {
|
||||
"host": "host.docker.internal",
|
||||
"port": 3307,
|
||||
"user": "remote",
|
||||
"password": os.environ.get("REPORTING_PASSWORD", "areiufh*&^yhdua"),
|
||||
"database": "ai",
|
||||
}
|
||||
if os.environ.get("REPORTING_SSL_CA"):
|
||||
rep_cfg["ssl_ca"] = os.environ["REPORTING_SSL_CA"]
|
||||
if os.environ.get("REPORTING_SSL_CERT"):
|
||||
rep_cfg["ssl_cert"] = os.environ["REPORTING_SSL_CERT"]
|
||||
if os.environ.get("REPORTING_SSL_KEY"):
|
||||
rep_cfg["ssl_key"] = os.environ["REPORTING_SSL_KEY"]
|
||||
|
||||
cnx2 = connect_html_or_die(rep_cfg, label="ReportingDB")
|
||||
cur2 = cnx2.cursor()
|
||||
|
||||
if "daily_sales" in serialized:
|
||||
upsert_daily_sales(cur2, serialized.get("daily_sales") or [])
|
||||
if "product_summary" in serialized:
|
||||
upsert_product_summary(cur2, serialized.get("product_summary") or [], period_from, period_to)
|
||||
if "customer_summary" in serialized:
|
||||
upsert_customer_summary(cur2, serialized.get("customer_summary") or [], period_from, period_to)
|
||||
if "product_daily" in serialized:
|
||||
upsert_product_daily(cur2, serialized.get("product_daily") or [])
|
||||
|
||||
cnx2.commit()
|
||||
cur2.close(); cnx2.close()
|
||||
except Exception as e:
|
||||
sys.stderr.write(f"[reporting] ERROR: {e}\n")
|
||||
|
||||
# --- KPI: jeśli wybrano 'kpis' -> bierz z wyników; w przeciwnym razie spróbuj z daily_sales; inaczej zera ---
|
||||
kpis = []
|
||||
if "kpis" in results and isinstance(results["kpis"], pd.DataFrame) and not results["kpis"].empty:
|
||||
r = results["kpis"].iloc[0]
|
||||
total_sales = r.get("total_sales") or 0
|
||||
total_qty = r.get("total_qty") or 0
|
||||
total_docs = r.get("total_docs") or 0
|
||||
asp = r.get("asp")
|
||||
else:
|
||||
daily = serialized.get("daily_sales") or []
|
||||
total_sales = sum((x.get("sales") or 0) for x in daily) if daily else 0
|
||||
total_qty = sum((x.get("qty") or 0) for x in daily) if daily else 0
|
||||
total_docs = sum((x.get("docs") or 0) for x in daily) if daily else 0
|
||||
asp = (total_sales / total_qty) if total_qty else None
|
||||
|
||||
kpis = [
|
||||
("Sprzedaż (PLN)", fmt_money(total_sales)),
|
||||
("Ilość (szt.)", "{:,.0f}".format(total_qty).replace(",", " ")),
|
||||
("Dokumenty", "{:,.0f}".format(total_docs).replace(",", " ")),
|
||||
("ASP (PLN/szt.)", fmt_money(asp) if asp is not None else "—"),
|
||||
]
|
||||
|
||||
# --- Sekcje HTML: renderuj tylko te, które policzyłeś ---
|
||||
parts = []
|
||||
if "top10_products_by_sales" in serialized:
|
||||
parts.append(html_table(serialized.get("top10_products_by_sales") or [], title="Top 10 produktów (po sprzedaży)", max_rows=10))
|
||||
if "top10_customers_by_sales" in serialized:
|
||||
parts.append(html_table(serialized.get("top10_customers_by_sales") or [], title="Top 10 klientów (po sprzedaży)", max_rows=10))
|
||||
if "daily_sales" in serialized:
|
||||
parts.append(html_table(serialized.get("daily_sales") or [], title="Sprzedaż dzienna (skrót)", max_rows=30))
|
||||
if "product_summary" in serialized:
|
||||
parts.append(html_table(serialized.get("product_summary") or [], title="Podsumowanie produktów (skrót)", max_rows=30))
|
||||
if "customer_summary" in serialized:
|
||||
parts.append(html_table(serialized.get("customer_summary") or [], title="Podsumowanie klientów (skrót)", max_rows=30))
|
||||
if "product_daily" in serialized:
|
||||
parts.append(html_table(serialized.get("product_daily") or [], title="Produkt × Dzień (próbka)", max_rows=30))
|
||||
|
||||
# --- AI tylko gdy: --ai true ORAZ jest co najmniej jeden rekord w którymś z wybranych agregatów ---
|
||||
api_key = API_KEY_HARDCODE or getenv("OPENAI_API_KEY", "")
|
||||
model = getenv("OPENAI_MODEL", "gpt-4.1")
|
||||
MODEL_ALIAS = {
|
||||
"gpt-4.1": "GPT-4.1",
|
||||
"gpt-4.1-mini": "GPT-4.1-mini",
|
||||
"gpt-4o": "GPT-4o",
|
||||
"gpt-4o-mini": "GPT-4o-mini",
|
||||
}
|
||||
model_alias = MODEL_ALIAS.get(model, model)
|
||||
|
||||
ai_section = ""
|
||||
if with_ai and has_any_rows(serialized):
|
||||
try:
|
||||
ai_data = {"kpis_hint": {"period_label": shown_label}}
|
||||
for name, records in serialized.items():
|
||||
ai_data[name] = compact_table(records, 100)
|
||||
ai_json = json.dumps(ai_data, ensure_ascii=False, separators=(",", ":"), default=str)
|
||||
|
||||
ai_section = call_openai_chat(
|
||||
api_key=(api_key or ""),
|
||||
model=model,
|
||||
system_prompt=("Jesteś analitykiem sprzedaży. Zwróć TYLKO jedną sekcję HTML (bez <html>/<head>/<body>). "
|
||||
"Streszcz kluczowe trendy i daj 3–6 zaleceń. Po polsku."),
|
||||
user_payload_json=ai_json,
|
||||
temperature=0.3,
|
||||
connect_timeout=10,
|
||||
read_timeout=90,
|
||||
max_retries=3,
|
||||
)
|
||||
except Exception as e:
|
||||
err = str(e)
|
||||
if "insufficient_quota" in err or "You exceeded your current quota" in err:
|
||||
try:
|
||||
ai_section = call_openai_chat(
|
||||
api_key=(api_key or ""),
|
||||
model="gpt-4.1-mini",
|
||||
system_prompt=("Jesteś analitykiem sprzedaży. Zwróć TYLKO jedną sekcję HTML (bez <html>/<head>/<body>). "
|
||||
"Streszcz kluczowe trendy i daj 3–6 zaleceń. Po polsku."),
|
||||
user_payload_json=ai_json,
|
||||
temperature=0.3,
|
||||
connect_timeout=10,
|
||||
read_timeout=90,
|
||||
max_retries=2,
|
||||
)
|
||||
model_alias = "GPT-4.1-mini"
|
||||
except Exception as ee:
|
||||
ai_section = (
|
||||
'<div style="color:#991b1b;background:#fff5f5;border:1px solid #fecaca;'
|
||||
'padding:10px;border-radius:8px;">Brak dostępnego limitu API. {}</div>'.format(str(ee))
|
||||
)
|
||||
else:
|
||||
ai_section = (
|
||||
'<div style="color:#991b1b;background:#fff5f5;border:1px solid #fecaca;'
|
||||
'padding:10px;border-radius:8px;">Błąd wywołania AI: {}</div>'.format(err)
|
||||
)
|
||||
else:
|
||||
ai_section = '<div style="color:#6b7280">Analiza AI wyłączona lub brak wybranych danych.</div>'
|
||||
model_alias = ""
|
||||
|
||||
# --- Finalny HTML ---
|
||||
report_html = render_report_html(
|
||||
period_label=shown_label,
|
||||
kpis=kpis,
|
||||
parts=parts,
|
||||
ai_section=ai_section,
|
||||
model_alias=(model_alias if (with_ai and has_any_rows(serialized)) else "")
|
||||
)
|
||||
sys.stdout.write(report_html)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -1,21 +0,0 @@
|
||||
<?php
|
||||
// modules/EcmInvoiceOuts/ai/enqueue.php
|
||||
$from = $_POST['from'] ?? null;
|
||||
$to = $_POST['to'] ?? null;
|
||||
$currency = $_POST['currency'] ?? 'PLN';
|
||||
$axis = $_POST['axis'] ?? 'sku_id';
|
||||
$label = $_POST['label'] ?? 'sku_name';
|
||||
$top_n = (int)($_POST['top_n'] ?? 50);
|
||||
$goal = $_POST['goal'] ?? 'porównanie Q2 vs Q1';
|
||||
|
||||
if (!$from || !$to) { http_response_code(400); exit('Missing from/to'); }
|
||||
|
||||
$base = __DIR__;
|
||||
@mkdir("$base/queue", 0777, true);
|
||||
|
||||
$payload = compact('from','to','currency','axis','label','top_n','goal');
|
||||
$id = bin2hex(random_bytes(8));
|
||||
file_put_contents("$base/queue/$id.json", json_encode($payload, JSON_UNESCAPED_UNICODE));
|
||||
|
||||
header('Content-Type: application/json; charset=utf-8');
|
||||
echo json_encode(['job_id' => $id]);
|
||||
150
modules/EcmInvoiceOuts/ai/preaggregates.py
Normal file
150
modules/EcmInvoiceOuts/ai/preaggregates.py
Normal file
@@ -0,0 +1,150 @@
|
||||
# --- preagg.py ---------------------------------------------------------------
|
||||
from __future__ import annotations
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from typing import Callable, Dict, List
|
||||
|
||||
# Rejestr agregatorów: name -> funkcja(df) -> DataFrame
|
||||
# AGGREGATORS: Dict[str, Callable[[pd.DataFrame], pd.DataFrame]] = {}
|
||||
AGGREGATORS = {}
|
||||
def aggregator(name: str):
|
||||
"""Dekorator do łatwego rejestrowania nowych agregatorów."""
|
||||
def _wrap(func: Callable[[pd.DataFrame], pd.DataFrame]):
|
||||
AGGREGATORS[name] = func
|
||||
return func
|
||||
return _wrap
|
||||
|
||||
def to_df(rows: List[tuple]) -> pd.DataFrame:
|
||||
"""Konwersja rows -> DataFrame (dopasuj nazwy kolumn do SELECT-a)."""
|
||||
cols = [
|
||||
"document_no",
|
||||
"customer_name", # i.parent_name
|
||||
"register_date", # DATE(i.register_date)
|
||||
"product_code", # ii.code
|
||||
"product_name", # ii.name
|
||||
"quantity", # ii.quantity
|
||||
"total_netto", # ii.total_netto (wartość sprzedaży netto)
|
||||
]
|
||||
df = pd.DataFrame(rows, columns=cols)
|
||||
if df.empty:
|
||||
return df
|
||||
# Typy
|
||||
df["register_date"] = pd.to_datetime(df["register_date"])
|
||||
df["quantity"] = pd.to_numeric(df["quantity"], errors="coerce").fillna(0.0)
|
||||
df["total_netto"] = pd.to_numeric(df["total_netto"], errors="coerce").fillna(0.0)
|
||||
# ASP (Average Selling Price) – średnia cena pozycji
|
||||
# Uwaga: ASP lepiej liczyć ważoną średnią w agregatach; tu to „unit price” na pozycji.
|
||||
df["unit_price"] = np.where(df["quantity"] != 0, df["total_netto"] / df["quantity"], np.nan)
|
||||
return df
|
||||
|
||||
# ------------------- Wbudowane agregatory (możesz dopisywać kolejne) -------------------
|
||||
|
||||
@aggregator("daily_sales")
|
||||
def daily_sales(df: pd.DataFrame) -> pd.DataFrame:
|
||||
"""Dzienna sprzedaż: ilość, wartość, liczba dokumentów, ASP ważony."""
|
||||
if df.empty:
|
||||
return df
|
||||
g = df.groupby(pd.Grouper(key="register_date", freq="D"))
|
||||
out = g.agg(
|
||||
qty=("quantity", "sum"),
|
||||
sales=("total_netto", "sum"),
|
||||
docs=("document_no", "nunique"),
|
||||
).reset_index()
|
||||
# ASP ważony (sales / qty)
|
||||
out["asp"] = np.where(out["qty"] != 0, out["sales"] / out["qty"], np.nan)
|
||||
# Zmiana d/d
|
||||
out["sales_pct_change_dod"] = out["sales"].pct_change()
|
||||
# Rolling 7
|
||||
out["sales_rolling7"] = out["sales"].rolling(7, min_periods=1).mean()
|
||||
return out
|
||||
|
||||
@aggregator("product_summary")
|
||||
def product_summary(df: pd.DataFrame) -> pd.DataFrame:
|
||||
"""Podsumowanie po produkcie."""
|
||||
if df.empty:
|
||||
return df
|
||||
g = df.groupby(["product_code", "product_name"], as_index=False).agg(
|
||||
qty=("quantity", "sum"),
|
||||
sales=("total_netto", "sum"),
|
||||
docs=("document_no", "nunique"),
|
||||
)
|
||||
g["asp_weighted"] = np.where(g["qty"] != 0, g["sales"] / g["qty"], np.nan)
|
||||
# Udział w koszyku (mix % po wartości)
|
||||
total_sales = g["sales"].sum()
|
||||
g["mix_share_sales"] = np.where(total_sales > 0, g["sales"] / total_sales, 0.0)
|
||||
return g.sort_values("sales", ascending=False)
|
||||
|
||||
@aggregator("customer_summary")
|
||||
def customer_summary(df: pd.DataFrame) -> pd.DataFrame:
|
||||
"""Podsumowanie po kliencie."""
|
||||
if df.empty:
|
||||
return df
|
||||
g = df.groupby(["customer_name"], as_index=False).agg(
|
||||
qty=("quantity", "sum"),
|
||||
sales=("total_netto", "sum"),
|
||||
docs=("document_no", "nunique"),
|
||||
distinct_products=("product_code", "nunique"),
|
||||
)
|
||||
g["asp_weighted"] = np.where(g["qty"] != 0, g["sales"] / g["qty"], np.nan)
|
||||
return g.sort_values("sales", ascending=False)
|
||||
|
||||
@aggregator("product_daily")
|
||||
def product_daily(df: pd.DataFrame) -> pd.DataFrame:
|
||||
"""Dzienna sprzedaż per produkt (przydatne do trendów/rollingów w AI)."""
|
||||
if df.empty:
|
||||
return df
|
||||
g = (df
|
||||
.groupby([pd.Grouper(key="register_date", freq="D"), "product_code", "product_name"], as_index=False)
|
||||
.agg(qty=("quantity", "sum"),
|
||||
sales=("total_netto", "sum")))
|
||||
# Rolling 7 per produkt
|
||||
g = g.sort_values(["product_code", "register_date"])
|
||||
g["sales_rolling7"] = g.groupby("product_code")["sales"].transform(lambda s: s.rolling(7, min_periods=1).mean())
|
||||
g["sales_pct_change_dod"] = g.groupby("product_code")["sales"].pct_change()
|
||||
return g
|
||||
|
||||
@aggregator("top10_products_by_sales")
|
||||
def top10_products_by_sales(df: pd.DataFrame) -> pd.DataFrame:
|
||||
"""Top 10 produktów po wartości sprzedaży (okres z wejścia)."""
|
||||
base = AGGREGATORS["product_summary"](df)
|
||||
return base.nlargest(10, "sales")
|
||||
|
||||
@aggregator("top10_customers_by_sales")
|
||||
def top10_customers_by_sales(df: pd.DataFrame) -> pd.DataFrame:
|
||||
"""Top 10 klientów po wartości sprzedaży."""
|
||||
base = AGGREGATORS["customer_summary"](df)
|
||||
return base.nlargest(10, "sales")
|
||||
|
||||
# ------------------- Runner -------------------
|
||||
|
||||
def compute_preaggregates(rows: List[tuple]) -> dict[str, pd.DataFrame]:
|
||||
#def compute_preaggregates(rows):
|
||||
"""Główny punkt wejścia: rows -> df -> uruchom wszystkie agregatory."""
|
||||
df = to_df(rows)
|
||||
# results: dict[str, pd.DataFrame] = {}
|
||||
results = {}
|
||||
for name, fn in AGGREGATORS.items():
|
||||
try:
|
||||
results[name] = fn(df).copy()
|
||||
except Exception as e:
|
||||
# Niech agregat nie wysadza całości – zapisz pusty DF + info
|
||||
results[name] = pd.DataFrame({"_error": [str(e)], "_aggregator": [name]})
|
||||
return results
|
||||
|
||||
def serialize_for_ai(results: dict[str, pd.DataFrame]) -> dict[str, list[dict]]:
|
||||
"""
|
||||
Konwersja wyników do lekkiego JSON-a (listy rekordów),
|
||||
który łatwo przekazać do modelu AI lub zapisać do pliku.
|
||||
"""
|
||||
# out: dict[str, list[dict]] = {}
|
||||
out = {}
|
||||
for name, df in results.items():
|
||||
if df is None or df.empty:
|
||||
out[name] = []
|
||||
else:
|
||||
# zaokrąglij liczby dla czytelności (opcjonalnie)
|
||||
df2 = df.copy()
|
||||
for c in df2.select_dtypes(include=[np.number]).columns:
|
||||
df2[c] = df2[c].round(6)
|
||||
out[name] = df2.to_dict(orient="records")
|
||||
return out
|
||||
@@ -1,12 +0,0 @@
|
||||
<?php
|
||||
// modules/EcmInvoiceOuts/ai/result.php
|
||||
$base = __DIR__;
|
||||
$files = glob("$base/out/*.json");
|
||||
rsort($files);
|
||||
$latest = $files[0] ?? null;
|
||||
|
||||
if (!$latest) { http_response_code(404); exit('Brak wyników'); }
|
||||
|
||||
$payload = json_decode(file_get_contents($latest), true);
|
||||
header('Content-Type: application/json; charset=utf-8');
|
||||
echo json_encode($payload, JSON_UNESCAPED_UNICODE | JSON_PRETTY_PRINT);
|
||||
@@ -1,37 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
import os
|
||||
import sys
|
||||
|
||||
try:
|
||||
import mysql.connector
|
||||
except Exception as e:
|
||||
sys.stderr.write("MySQL connector not available: %s\n" % e)
|
||||
sys.exit(1)
|
||||
|
||||
def getenv(key, default=None):
|
||||
return os.environ.get(key, default)
|
||||
|
||||
def main():
|
||||
cfg = {
|
||||
"host": getenv("MYSQL_HOST", "twinpol-mysql56"),
|
||||
"user": getenv("MYSQL_USER", "root"),
|
||||
"password": getenv("MYSQL_PASSWORD", "rootpassword"),
|
||||
"database": getenv("MYSQL_DATABASE", "preDb_0dcc87940d3655fa574b253df04ca1c3"),
|
||||
"port": int(getenv("MYSQL_PORT", "3306")),
|
||||
}
|
||||
|
||||
try:
|
||||
cnx = mysql.connector.connect(**cfg)
|
||||
cur = cnx.cursor()
|
||||
cur.execute("SELECT COUNT(*) FROM ecminvoiceouts WHERE YEAR(register_date)=2025")
|
||||
row = cur.fetchone()
|
||||
count = int(row[0]) if row and row[0] is not None else 0
|
||||
print(count)
|
||||
cur.close()
|
||||
cnx.close()
|
||||
except Exception as e:
|
||||
sys.stderr.write("Query error: %s\n" % e)
|
||||
sys.exit(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -1,141 +0,0 @@
|
||||
# worker.py
|
||||
import os, json, io, uuid
|
||||
import datetime as dt
|
||||
from typing import Dict, Any, List
|
||||
|
||||
import polars as pl
|
||||
import pymysql
|
||||
from tenacity import retry, wait_exponential, stop_after_attempt
|
||||
from dotenv import load_dotenv
|
||||
|
||||
load_dotenv()
|
||||
|
||||
AI_MODEL = os.getenv("AI_MODEL", "gpt-5-pro")
|
||||
AI_API_KEY = os.getenv("AI_API_KEY")
|
||||
|
||||
MYSQL_CONF = dict(
|
||||
host=os.getenv("MYSQL_HOST", "localhost"),
|
||||
user=os.getenv("MYSQL_USER", "root"),
|
||||
password=os.getenv("MYSQL_PASSWORD", ""),
|
||||
database=os.getenv("MYSQL_DB", "sales"),
|
||||
cursorclass=pymysql.cursors.DictCursor,
|
||||
)
|
||||
|
||||
def mysql_query(sql: str, params: tuple = ()) -> pl.DataFrame:
|
||||
conn = pymysql.connect(**MYSQL_CONF)
|
||||
try:
|
||||
with conn.cursor() as cur:
|
||||
cur.execute(sql, params)
|
||||
rows = cur.fetchall()
|
||||
finally:
|
||||
conn.close()
|
||||
return pl.from_dicts(rows)
|
||||
|
||||
def to_csv(df: pl.DataFrame) -> str:
|
||||
buf = io.StringIO()
|
||||
df.write_csv(buf)
|
||||
return buf.getvalue()
|
||||
|
||||
SQL_KPIS_DAILY = """
|
||||
SELECT DATE(invoice_date) AS d,
|
||||
SUM(net_amount) AS revenue,
|
||||
SUM(quantity) AS qty,
|
||||
ROUND(100*SUM(net_amount - cost_amount)/NULLIF(SUM(net_amount),0), 2) AS gross_margin_pct,
|
||||
ROUND(100*SUM(discount_amount)/NULLIF(SUM(gross_amount),0), 2) AS discount_pct
|
||||
FROM fact_invoices
|
||||
WHERE invoice_date BETWEEN %s AND %s
|
||||
GROUP BY 1
|
||||
ORDER BY 1;
|
||||
"""
|
||||
|
||||
SQL_TOP_SEGMENTS = """
|
||||
SELECT {axis} AS key,
|
||||
ANY_VALUE({label}) AS label,
|
||||
SUM(net_amount) AS revenue,
|
||||
SUM(quantity) AS qty,
|
||||
ROUND(100*SUM(net_amount - cost_amount)/NULLIF(SUM(net_amount),0), 2) AS gross_margin_pct,
|
||||
ROUND(100*(SUM(net_amount) - LAG(SUM(net_amount)) OVER(ORDER BY 1))/
|
||||
NULLIF(LAG(SUM(net_amount)) OVER(ORDER BY 1),0), 2) AS trend_30d
|
||||
FROM fact_invoices
|
||||
WHERE invoice_date BETWEEN DATE_SUB(%s, INTERVAL 60 DAY) AND %s
|
||||
GROUP BY 1
|
||||
ORDER BY revenue DESC
|
||||
LIMIT %s;
|
||||
"""
|
||||
|
||||
class AIClient:
|
||||
def __init__(self, api_key: str): self.api_key = api_key
|
||||
@retry(wait=wait_exponential(multiplier=1, min=1, max=20), stop=stop_after_attempt(6))
|
||||
def structured_analysis(self, prompt: str, schema: Dict[str, Any]) -> Dict[str, Any]:
|
||||
# TODO: PODMIEŃ na realne wywołanie modelu z "Structured Outputs"
|
||||
raise NotImplementedError("Wire your model SDK here")
|
||||
|
||||
@retry(wait=wait_exponential(multiplier=1, min=1, max=20), stop=stop_after_attempt(6))
|
||||
def batch_submit(self, ndjson_lines: List[str]) -> str:
|
||||
# TODO: PODMIEŃ na rzeczywiste Batch API
|
||||
raise NotImplementedError
|
||||
|
||||
def run_online(from_date: str, to_date: str, currency: str, axis: str, label: str, top_n: int, goal: str) -> Dict[str, Any]:
|
||||
kpis = mysql_query(SQL_KPIS_DAILY, (from_date, to_date))
|
||||
top = mysql_query(SQL_TOP_SEGMENTS.format(axis=axis, label=label), (from_date, to_date, top_n))
|
||||
|
||||
csv_blocks = ("## kpis_daily\n" + to_csv(kpis) + "\n\n" +
|
||||
"## top_segments\n" + to_csv(top))
|
||||
|
||||
with open(os.path.join(os.path.dirname(__file__), "sales-analysis.schema.json"), "r", encoding="utf-8") as f:
|
||||
schema = json.load(f)
|
||||
|
||||
prompt = f"""
|
||||
Jesteś analitykiem sprzedaży. Otrzymasz: (a) kontekst, (b) dane.
|
||||
Zwróć **wyłącznie** JSON zgodny ze schema.
|
||||
|
||||
Kontekst:
|
||||
- Waluta: {currency}
|
||||
- Zakres: {from_date} → {to_date}
|
||||
- Cel: {goal}
|
||||
- Poziom segmentacji: {axis}
|
||||
|
||||
Dane (CSV):
|
||||
{csv_blocks}
|
||||
|
||||
Wskazówki:
|
||||
- Użyj danych jak są (nie wymyślaj liczb).
|
||||
- W meta.scope wpisz opis zakresu i segmentacji.
|
||||
- Jeśli brak anomalii – anomalies: [].
|
||||
- Kwoty do 2 miejsc, procenty do 1.
|
||||
"""
|
||||
|
||||
ai = AIClient(AI_API_KEY)
|
||||
result = ai.structured_analysis(prompt, schema)
|
||||
|
||||
out_dir = os.path.join(os.path.dirname(__file__), "out")
|
||||
os.makedirs(out_dir, exist_ok=True)
|
||||
out_path = os.path.join(out_dir, f"{uuid.uuid4()}.json")
|
||||
with open(out_path, "w", encoding="utf-8") as f:
|
||||
json.dump(result, f, ensure_ascii=False)
|
||||
return {"status": "ok", "path": out_path}
|
||||
|
||||
def run_batch(from_date: str, to_date: str, axis: str, label: str):
|
||||
# Zgodnie z blueprintem – generujemy linie NDJSON (skrót; pełny wariant w PDF)
|
||||
# TODO: dodać realne wywołania batch_submit i zapisać ID/stan
|
||||
raise NotImplementedError("Implement batch per blueprint")
|
||||
|
||||
if __name__ == "__main__":
|
||||
import argparse
|
||||
p = argparse.ArgumentParser()
|
||||
sub = p.add_subparsers(dest="cmd")
|
||||
o = sub.add_parser("online")
|
||||
o.add_argument("from_date"); o.add_argument("to_date"); o.add_argument("currency")
|
||||
o.add_argument("axis", choices=["sku_id","client_id","region_code"])
|
||||
o.add_argument("label"); o.add_argument("top_n", type=int, nargs="?", default=50)
|
||||
o.add_argument("goal")
|
||||
b = sub.add_parser("batch")
|
||||
b.add_argument("from_date"); b.add_argument("to_date"); b.add_argument("axis"); b.add_argument("label")
|
||||
args = p.parse_args()
|
||||
|
||||
if args.cmd == "online":
|
||||
print(run_online(args.from_date, args.to_date, args.currency, args.axis, args.label, args.top_n, args.goal))
|
||||
elif args.cmd == "batch":
|
||||
print(run_batch(args.from_date, args.to_date, args.axis, args.label))
|
||||
else:
|
||||
p.print_help()
|
||||
177
modules/EcmInvoiceOuts/report_form.php
Normal file
177
modules/EcmInvoiceOuts/report_form.php
Normal file
@@ -0,0 +1,177 @@
|
||||
<?php
|
||||
/**
|
||||
* report_form.php — formularz + uruchomienie analysisAI.py z parametrami
|
||||
* ZGODNE z PHP 5.6 i Sugar 6 (wyciszone E_STRICT/E_DEPRECATED/NOTICE).
|
||||
*/
|
||||
|
||||
// --- wycisz „hałas” Sugar CRM ---
|
||||
error_reporting(E_ALL & ~E_STRICT & ~E_DEPRECATED & ~E_NOTICE);
|
||||
ini_set('display_errors', '0');
|
||||
// (opcjonalnie) loguj do pliku
|
||||
// ini_set('log_errors', '1');
|
||||
// ini_set('error_log', '/var/log/php_form_errors.log');
|
||||
|
||||
// --- ŚCIEŻKI (dostosuj do swojej instalacji) ---
|
||||
$python = '/usr/local/bin/python3';
|
||||
$script = '/var/www/html/modules/EcmInvoiceOuts/ai/analysisAI.py';
|
||||
$baseDir = dirname($script);
|
||||
|
||||
// --- domyślne wartości pól ---
|
||||
$defaultDateTo = date('Y-m-d');
|
||||
$defaultDateFrom = date('Y-m-d', strtotime('-7 days'));
|
||||
|
||||
// --- zbieranie POST (PHP 5.6 friendly) ---
|
||||
$submitted = (isset($_SERVER['REQUEST_METHOD']) && $_SERVER['REQUEST_METHOD'] === 'POST');
|
||||
$post_date_from = isset($_POST['date_from']) ? $_POST['date_from'] : $defaultDateFrom;
|
||||
$post_date_to = isset($_POST['date_to']) ? $_POST['date_to'] : $defaultDateTo;
|
||||
$post_preaggs = (isset($_POST['preaggs']) && is_array($_POST['preaggs'])) ? $_POST['preaggs'] : array();
|
||||
$post_with_ai = !empty($_POST['with_ai']);
|
||||
|
||||
function h($v) { return htmlspecialchars($v, ENT_QUOTES, 'UTF-8'); }
|
||||
function is_valid_date_yyyy_mm_dd($d) {
|
||||
return (bool)preg_match('/^\d{4}-\d{2}-\d{2}$/', $d);
|
||||
}
|
||||
|
||||
// --- wykonanie skryptu Pythona, jeśli formularz został wysłany ---
|
||||
$ran = false;
|
||||
$ok = false;
|
||||
$rc = 0;
|
||||
$out = '';
|
||||
$err = '';
|
||||
|
||||
if ($submitted) {
|
||||
// prosta walidacja dat
|
||||
if (!is_valid_date_yyyy_mm_dd($post_date_from) || !is_valid_date_yyyy_mm_dd($post_date_to)) {
|
||||
$err = "Nieprawidłowy format daty. Użyj YYYY-MM-DD.";
|
||||
$ran = true;
|
||||
} else {
|
||||
// zbuduj argumenty
|
||||
$args = array(
|
||||
'--date-from', $post_date_from,
|
||||
'--date-to', $post_date_to,
|
||||
'--ai', ($post_with_ai ? 'true' : 'false')
|
||||
);
|
||||
if (!empty($post_preaggs)) {
|
||||
// CSV z zaznaczonych preagregatów
|
||||
$args[] = '--metrics';
|
||||
$args[] = implode(',', $post_preaggs);
|
||||
}
|
||||
|
||||
// komenda: przejdź do katalogu skryptu, uruchom pythona; zbierz stdout+stderr
|
||||
$cmd = 'cd ' . escapeshellarg($baseDir) . ' && ' .
|
||||
escapeshellcmd($python) . ' ' . escapeshellarg($script);
|
||||
|
||||
foreach ($args as $a) {
|
||||
$cmd .= ' ' . escapeshellarg($a);
|
||||
}
|
||||
|
||||
$output = array();
|
||||
$returnVar = 0;
|
||||
exec($cmd . ' 2>&1', $output, $returnVar);
|
||||
|
||||
$ran = true;
|
||||
$rc = $returnVar;
|
||||
$out = implode("\n", $output);
|
||||
$ok = ($returnVar === 0);
|
||||
|
||||
if (!$ok && $err === '') {
|
||||
$err = "Błąd uruchamiania skryptu Python (kod: " . $rc . "):\n" . $out;
|
||||
}
|
||||
}
|
||||
}
|
||||
?>
|
||||
<!doctype html>
|
||||
<html lang="pl">
|
||||
<head>
|
||||
<meta charset="utf-8">
|
||||
<title>Generator raportu sprzedaży</title>
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1">
|
||||
<style>
|
||||
body { font: 14px/1.4 system-ui, Arial, sans-serif; padding: 20px; }
|
||||
fieldset { margin-bottom: 16px; padding: 12px; border-radius: 6px; border:1px solid #e5e5e5; }
|
||||
.row { display: flex; gap: 16px; flex-wrap: wrap; }
|
||||
.col { min-width: 220px; flex: 1; }
|
||||
label { display:block; margin: 6px 0; }
|
||||
input[type="date"], button { padding: 6px 10px; font-size:14px; }
|
||||
button { margin-top: 10px; cursor: pointer; border:1px solid #0a66c2; background:#0a66c2; color:#fff; border-radius:8px; }
|
||||
.pill { display:inline-block; padding:2px 8px; border-radius:999px; background:#eee; margin:4px 6px 0 0; }
|
||||
.out { white-space: normal; background: #fff; border:1px solid #ddd; padding:12px; border-radius:6px; }
|
||||
.error { white-space: pre-wrap; background: #fff3f3; border:1px solid #f3c2c2; padding:12px; border-radius:6px; color:#b00020; }
|
||||
.muted { color:#666; }
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
|
||||
<h1>Raport sprzedaży — parametry</h1>
|
||||
|
||||
<form method="post">
|
||||
<!-- zakres dat -->
|
||||
<fieldset>
|
||||
<legend>Zakres dat</legend>
|
||||
<div class="row">
|
||||
<div class="col">
|
||||
<label>Data od:
|
||||
<input type="date" name="date_from" value="<?php echo h($post_date_from); ?>" required>
|
||||
</label>
|
||||
</div>
|
||||
<div class="col">
|
||||
<label>Data do:
|
||||
<input type="date" name="date_to" value="<?php echo h($post_date_to); ?>" required>
|
||||
</label>
|
||||
</div>
|
||||
</div>
|
||||
</fieldset>
|
||||
|
||||
<!-- preagregaty -->
|
||||
<fieldset>
|
||||
<legend>Preagregaty do analizy</legend>
|
||||
<label><input type="checkbox" name="preaggs[]" value="daily_sales" <?php echo in_array('daily_sales', $post_preaggs, true) ? 'checked' : ''; ?>> Dzienne sprzedaże</label>
|
||||
<label><input type="checkbox" name="preaggs[]" value="product_summary" <?php echo in_array('product_summary', $post_preaggs, true) ? 'checked' : ''; ?>> Podsumowanie produktów</label>
|
||||
<label><input type="checkbox" name="preaggs[]" value="customer_summary" <?php echo in_array('customer_summary', $post_preaggs, true) ? 'checked' : ''; ?>> Podsumowanie klientów</label>
|
||||
<label><input type="checkbox" name="preaggs[]" value="product_daily" <?php echo in_array('product_daily', $post_preaggs, true) ? 'checked' : ''; ?>> Sprzedaż produktu dziennie</label>
|
||||
<label><input type="checkbox" name="preaggs[]" value="top10_products_by_sales" <?php echo in_array('top10_products_by_sales', $post_preaggs, true) ? 'checked' : ''; ?>> Top10 produktów</label>
|
||||
<label><input type="checkbox" name="preaggs[]" value="top10_customers_by_sales"<?php echo in_array('top10_customers_by_sales', $post_preaggs, true) ? 'checked' : ''; ?>> Top10 klientów</label>
|
||||
</fieldset>
|
||||
|
||||
<!-- AI -->
|
||||
<fieldset>
|
||||
<legend>Analiza AI</legend>
|
||||
<label>
|
||||
<input type="checkbox" name="with_ai" <?php echo $post_with_ai ? 'checked' : ''; ?>> Dołącz analizę AI
|
||||
</label>
|
||||
</fieldset>
|
||||
|
||||
<button type="submit">Generuj</button>
|
||||
</form>
|
||||
|
||||
<?php if ($submitted): ?>
|
||||
<hr>
|
||||
<h2>Użyte parametry</h2>
|
||||
<p>
|
||||
<span class="pill">Od: <?php echo h($post_date_from); ?></span>
|
||||
<span class="pill">Do: <?php echo h($post_date_to); ?></span>
|
||||
<span class="pill">AI: <?php echo $post_with_ai ? 'tak' : 'nie'; ?></span>
|
||||
</p>
|
||||
<p>Preagregaty:
|
||||
<?php
|
||||
if (!empty($post_preaggs)) {
|
||||
foreach ($post_preaggs as $p) {
|
||||
echo '<span class="pill">'.h($p).'</span>';
|
||||
}
|
||||
} else {
|
||||
echo '<span class="muted">brak</span>';
|
||||
}
|
||||
?>
|
||||
</p>
|
||||
|
||||
<h2>Wynik analizy</h2>
|
||||
<?php if (!$ok): ?>
|
||||
<div class="error"><?php echo h($err); ?></div>
|
||||
<?php else: ?>
|
||||
<!-- Zakładamy, że Python zwraca gotowy HTML -->
|
||||
<div class="out"><?php echo $out; ?></div>
|
||||
<?php endif; ?>
|
||||
<?php endif; ?>
|
||||
|
||||
</body>
|
||||
</html>
|
||||
@@ -1,16 +1,28 @@
|
||||
<?php
|
||||
// Runs the Python script, waits for completion, and returns its output.
|
||||
$python = '/usr/local/bin/python3';
|
||||
$script = '/var/www/html/modules/EcmInvoiceOuts/ai/analysisAI.py';
|
||||
$cmd = escapeshellcmd("$python $script");
|
||||
|
||||
$cmd = 'python3 /var/www/html/modules/EcmInvoiceOuts/ai/test.py';
|
||||
// odczyt
|
||||
$output = [];
|
||||
$returnVar = 0;
|
||||
exec($cmd . ' 2>&1', $output, $returnVar);
|
||||
$body = implode("\n", $output);
|
||||
|
||||
// błąd Pythona
|
||||
if ($returnVar !== 0) {
|
||||
// pokaż błąd jako tekst
|
||||
while (ob_get_level()) { ob_end_clean(); }
|
||||
header_remove();
|
||||
header('Content-Type: text/plain; charset=utf-8');
|
||||
http_response_code(500);
|
||||
echo "Error running Python script:\n" . implode("\n", $output);
|
||||
echo "Error running Python script:\n".$body;
|
||||
exit;
|
||||
}
|
||||
|
||||
// Expect a single line with the count
|
||||
echo trim(implode("\n", $output));
|
||||
// --- WYMUSZENIE RENDEROWANIA HTML ---
|
||||
while (ob_get_level()) { ob_end_clean(); } // wyczyść wszystkie bufory
|
||||
header_remove(); // usuń nagłówki ustawione wcześniej przez framework
|
||||
header('Content-Type: text/html; charset=utf-8');
|
||||
echo $body;
|
||||
exit; // ZATRZYMAJ framework (np. SugarCRM), żeby nic już nie dopisywał
|
||||
|
||||
Reference in New Issue
Block a user