# preagregaty i analiza AI
This commit is contained in:
@@ -1,31 +1,224 @@
|
||||
#!/usr/bin/env python3
|
||||
import os, sys, json
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
"""
|
||||
analysisAI.py — pobiera dane z MySQL, liczy preagregaty, renderuje HTML i dokłada analizę AI.
|
||||
|
||||
ZMIENNE ŚRODOWISKOWE (mają domyślne wartości):
|
||||
OPENAI_API_KEY - klucz do OpenAI (gdy pusty -> skrypt pokaże wersję bez AI)
|
||||
OPENAI_MODEL - np. gpt-4.1 (domyślnie)
|
||||
MYSQL_HOST - host MySQL (domyślnie: localhost)
|
||||
MYSQL_USER - użytkownik MySQL (domyślnie: root)
|
||||
MYSQL_PASSWORD - hasło MySQL (domyślnie: rootpassword)
|
||||
MYSQL_DATABASE - nazwa bazy (domyślnie: preDb_0dcc87940d3655fa574b253df04ca1c3)
|
||||
MYSQL_PORT - port MySQL (domyślnie: 3306)
|
||||
PERIOD_FROM - data od (YYYY-MM-DD); gdy brak -> poprzedni pełny miesiąc
|
||||
PERIOD_TO - data do (YYYY-MM-DD, exclusive); gdy brak -> pierwszy dzień bieżącego miesiąca
|
||||
INVOICE_TYPE - typ dokumentu (domyślnie: normal)
|
||||
"""
|
||||
|
||||
import os, sys, json, math, time, warnings
|
||||
from datetime import date, timedelta
|
||||
|
||||
API_KEY = "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"
|
||||
|
||||
|
||||
# Wycisz ostrzeżenie urllib3 (LibreSSL na macOS itp.)
|
||||
try:
|
||||
from urllib3.exceptions import NotOpenSSLWarning
|
||||
warnings.filterwarnings("ignore", category=NotOpenSSLWarning)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
import requests
|
||||
import mysql.connector
|
||||
from preaggregates import compute_preaggregates, serialize_for_ai
|
||||
|
||||
try:
|
||||
import mysql.connector
|
||||
except Exception as e:
|
||||
sys.stderr.write("MySQL connector not available: %s\n" % e)
|
||||
sys.exit(1)
|
||||
# --------- utils ---------
|
||||
|
||||
def getenv(key, default=None):
|
||||
return os.environ.get(key, default)
|
||||
def getenv(k, d=None):
|
||||
return os.environ.get(k, d)
|
||||
|
||||
def last_full_month_bounds():
|
||||
"""Zwraca (from_iso, to_iso) dla poprzedniego pełnego miesiąca."""
|
||||
today_first = date.today().replace(day=1)
|
||||
to_dt = today_first
|
||||
prev_last = today_first - timedelta(days=1)
|
||||
from_dt = prev_last.replace(day=1)
|
||||
return from_dt.isoformat(), to_dt.isoformat()
|
||||
|
||||
def compact_table(table, limit=30):
|
||||
"""Przytnij listę rekordów i znormalizuj liczby (NaN/Inf -> None)."""
|
||||
out = []
|
||||
if not table:
|
||||
return out
|
||||
for i, row in enumerate(table):
|
||||
if i >= int(limit): break
|
||||
new = {}
|
||||
for k, v in row.items():
|
||||
if isinstance(v, float):
|
||||
new[k] = round(v, 6) if math.isfinite(v) else None
|
||||
else:
|
||||
new[k] = v
|
||||
out.append(new)
|
||||
return out
|
||||
|
||||
def build_ai_payload(serialized, period_label):
|
||||
"""Kompaktowy JSON do AI (ograniczone rozmiary)."""
|
||||
return {
|
||||
"kpis_hint": {"period_label": period_label},
|
||||
"daily_sales": compact_table(serialized.get("daily_sales"), 30),
|
||||
"product_summary": compact_table(serialized.get("product_summary"), 50),
|
||||
"customer_summary": compact_table(serialized.get("customer_summary"), 50),
|
||||
"top10_products_by_sales": compact_table(serialized.get("top10_products_by_sales"), 10),
|
||||
"top10_customers_by_sales": compact_table(serialized.get("top10_customers_by_sales"), 10),
|
||||
"product_daily_sample": compact_table(serialized.get("product_daily"), 40),
|
||||
}
|
||||
|
||||
def call_openai_chat(api_key, model, system_prompt, user_payload_json,
|
||||
temperature=0.3, connect_timeout=10, read_timeout=90, max_retries=3):
|
||||
"""Wywołanie Chat Completions (retry + backoff). Zwraca HTML (sekcję) od AI."""
|
||||
url = "https://api.openai.com/v1/chat/completions"
|
||||
headers = {"Authorization": "Bearer " + api_key, "Content-Type": "application/json"}
|
||||
body = {
|
||||
"model": model,
|
||||
"messages": [
|
||||
{"role": "system", "content": system_prompt},
|
||||
{"role": "user", "content": "Dane (JSON):\n\n" + user_payload_json},
|
||||
],
|
||||
"temperature": temperature,
|
||||
# "max_tokens": 1200, # możesz odkomentować, aby ograniczyć długość odpowiedzi
|
||||
}
|
||||
last_err = None
|
||||
for attempt in range(1, int(max_retries) + 1):
|
||||
try:
|
||||
r = requests.post(url, headers=headers, json=body, timeout=(connect_timeout, read_timeout))
|
||||
if 200 <= r.status_code < 300:
|
||||
data = r.json()
|
||||
return data.get("choices", [{}])[0].get("message", {}).get("content", "")
|
||||
last_err = RuntimeError("OpenAI HTTP {}: {}".format(r.status_code, r.text))
|
||||
except requests.exceptions.RequestException as e:
|
||||
last_err = e
|
||||
time.sleep(min(2 ** attempt, 10))
|
||||
raise RuntimeError("OpenAI request failed: {}".format(last_err))
|
||||
|
||||
def fmt_money(v):
|
||||
try:
|
||||
return "{:,.2f}".format(float(v)).replace(",", " ").replace(".", ",")
|
||||
except Exception:
|
||||
return str(v)
|
||||
|
||||
def html_table(records, title=None, max_rows=20):
|
||||
"""Proste generowanie tabeli HTML z listy dict-ów."""
|
||||
if not records:
|
||||
return '<div class="empty">Brak danych</div>'
|
||||
cols = list(records[0].keys())
|
||||
body_rows = records[:max_rows]
|
||||
thead = "".join("<th>{}</th>".format(c) for c in cols)
|
||||
trs = []
|
||||
for r in body_rows:
|
||||
tds = []
|
||||
for c in cols:
|
||||
val = r.get(c, "")
|
||||
if isinstance(val, (int, float)):
|
||||
# format dla kolumn „sales”, „qty”, „asp”, itp. – lekko ładniej
|
||||
if "sales" in c or "total" in c or "netto" in c:
|
||||
tds.append('<td class="num">{}</td>'.format(fmt_money(val)))
|
||||
else:
|
||||
tds.append('<td class="num">{}</td>'.format(val))
|
||||
else:
|
||||
tds.append('<td>{}</td>'.format(val))
|
||||
trs.append("<tr>{}</tr>".format("".join(tds)))
|
||||
cap = '<div class="tbl-title">{}</div>'.format(title) if title else ""
|
||||
return (
|
||||
cap +
|
||||
'<div class="tbl-wrap"><table class="tbl">'
|
||||
'<thead><tr>{}</tr></thead><tbody>{}</tbody></table></div>'.format(thead, "".join(trs))
|
||||
)
|
||||
|
||||
def render_report_html(period_label, kpis, parts, ai_section):
|
||||
"""Składa finalny jeden <div> z lekkim CSS inline."""
|
||||
css = (
|
||||
"font-family:system-ui,-apple-system,Segoe UI,Roboto,Arial,sans-serif;"
|
||||
"max-width:1200px;margin:24px auto;padding:16px 20px;border:1px solid #e5e7eb;"
|
||||
"border-radius:12px;background:#fff;color:#111827"
|
||||
)
|
||||
kpi_item = (
|
||||
'<div class="kpi"><div class="kpi-label">{label}</div>'
|
||||
'<div class="kpi-value">{value}</div></div>'
|
||||
)
|
||||
kpi_html = "".join(
|
||||
kpi_item.format(label=lbl, value=val) for (lbl, val) in kpis
|
||||
)
|
||||
sections_html = "".join(parts)
|
||||
# jeśli AI nie zwróciło <div>, owiń
|
||||
if ai_section and not ai_section.lstrip().startswith("<div"):
|
||||
ai_section = '<div class="ai-section">{}</div>'.format(ai_section)
|
||||
|
||||
return f"""
|
||||
<div style="{css}">
|
||||
<h2 style="margin:0 0 12px;font-size:22px;">Raport sprzedaży — {period_label}</h2>
|
||||
<div style="display:grid;grid-template-columns:repeat(4,minmax(0,1fr));gap:12px;margin:12px 0 20px;">
|
||||
{kpi_html}
|
||||
</div>
|
||||
{sections_html}
|
||||
<div style="margin-top:20px;border-top:1px solid #e5e7eb;padding-top:16px;">
|
||||
<h3 style="margin:0 0 8px;font-size:18px;">Analiza i rekomendacje (AI)</h3>
|
||||
{ai_section if ai_section else '<div style="color:#6b7280">Brak odpowiedzi AI (brak OPENAI_API_KEY)</div>'}
|
||||
</div>
|
||||
</div>
|
||||
<style>
|
||||
.kpi {{background:#f8fafc;border:1px solid #e5e7eb;border-radius:10px;padding:12px;}}
|
||||
.kpi-label {{font-size:12px;color:#6b7280;margin-bottom:4px;}}
|
||||
.kpi-value {{font-size:18px;font-weight:700;}}
|
||||
.tbl-title {{font-weight:600;margin:16px 0 8px;font-size:15px;}}
|
||||
.tbl-wrap {{overflow-x:auto;border:1px solid #e5e7eb;border-radius:8px;}}
|
||||
.tbl {{border-collapse:collapse;width:100%;font-size:14px;}}
|
||||
.tbl thead th {{text-align:left;background:#f3f4f6;padding:8px;border-bottom:1px solid #e5e7eb;white-space:nowrap;}}
|
||||
.tbl tbody td {{padding:8px;border-bottom:1px solid #f3f4f6;vertical-align:top;}}
|
||||
.tbl td.num {{text-align:right;white-space:nowrap;}}
|
||||
.empty {{color:#6b7280;font-style:italic;margin:8px 0;}}
|
||||
.ai-section {{background:#f8fafc;border:1px solid #e5e7eb;border-radius:10px;padding:12px;}}
|
||||
</style>
|
||||
"""
|
||||
|
||||
# --------- main ---------
|
||||
|
||||
def main():
|
||||
# Konfiguracja DB
|
||||
cfg = {
|
||||
#"host": getenv("MYSQL_HOST", "twinpol-mysql56"),
|
||||
"host": getenv("MYSQL_HOST", "localhost"),
|
||||
"host": getenv("MYSQL_HOST", "twinpol-mysql56"),
|
||||
# "host": getenv("MYSQL_HOST", "localhost"),
|
||||
"user": getenv("MYSQL_USER", "root"),
|
||||
"password": getenv("MYSQL_PASSWORD", "rootpassword"),
|
||||
"database": getenv("MYSQL_DATABASE", "preDb_0dcc87940d3655fa574b253df04ca1c3"),
|
||||
"port": int(getenv("MYSQL_PORT", "3306")),
|
||||
}
|
||||
|
||||
# Zakres dat
|
||||
period_from = getenv("PERIOD_FROM")
|
||||
period_to = getenv("PERIOD_TO")
|
||||
if not period_from or not period_to:
|
||||
period_from, period_to = last_full_month_bounds()
|
||||
period_label = "{} .. {}".format(period_from, period_to)
|
||||
invoice_type = getenv("INVOICE_TYPE", "normal")
|
||||
|
||||
# Konfiguracja AI
|
||||
#api_key = getenv("OPENAI_API_KEY", "")
|
||||
api_key = API_KEY
|
||||
model = getenv("OPENAI_MODEL", "gpt-4.1")
|
||||
system_prompt = (
|
||||
"Jesteś analitykiem sprzedaży. Zwróć TYLKO jedną sekcję HTML (bez <html>/<head>/<body>), "
|
||||
"może być pojedynczy <div> z nagłówkami i listami. Podsumuj trendy, wskaż kluczowe produkty/klientów, "
|
||||
"anomalia/odchylenia oraz daj 3–6 praktycznych rekomendacji. Krótko, konkretnie, po polsku."
|
||||
)
|
||||
|
||||
# SQL -> rows
|
||||
try:
|
||||
cnx = mysql.connector.connect(**cfg)
|
||||
cur = cnx.cursor()
|
||||
#cur.execute("SELECT COUNT(*) FROM ecminvoiceouts WHERE YEAR(register_date)=2025")
|
||||
cur.execute("""
|
||||
cur.execute(
|
||||
"""
|
||||
SELECT i.document_no,
|
||||
i.parent_name,
|
||||
DATE(i.register_date) AS register_date,
|
||||
@@ -38,37 +231,88 @@ def main():
|
||||
WHERE i.register_date >= %s
|
||||
AND i.register_date < %s
|
||||
AND i.type = %s
|
||||
""", ("2025-07-01", "2025-08-01", "normal"))
|
||||
""",
|
||||
(period_from, period_to, invoice_type),
|
||||
)
|
||||
rows = cur.fetchall()
|
||||
|
||||
results = compute_preaggregates(rows)
|
||||
|
||||
# 2) podejrzyj wyniki
|
||||
# ['daily_sales', 'product_summary', 'customer_summary', 'product_daily',
|
||||
# 'top10_products_by_sales', 'top10_customers_by_sales']
|
||||
print(">> available tables:", list(results.keys()))
|
||||
# print(results["daily_sales"].head(10))
|
||||
# print(results["product_summary"])
|
||||
# print(results["customer_summary"])
|
||||
# print(results["product_daily"])
|
||||
# print(results["top10_products_by_sales"])
|
||||
# print(results["top10_customers_by_sales"])
|
||||
results["daily_sales"].head(10)
|
||||
results["product_summary"]
|
||||
results["customer_summary"]
|
||||
results["product_daily"]
|
||||
results["top10_products_by_sales"]
|
||||
results["top10_customers_by_sales"]
|
||||
|
||||
# 3) zserializuj do lekkiego JSON-a (np. do AI lub do pliku)
|
||||
ai_payload = serialize_for_ai(results)
|
||||
print(json.dumps(ai_payload, ensure_ascii=False, indent=2, default=str))
|
||||
|
||||
cur.close()
|
||||
cnx.close()
|
||||
except Exception as e:
|
||||
sys.stderr.write("Query error: %s\n" % e)
|
||||
sys.stdout.write(
|
||||
'<div style="font-family:system-ui,-apple-system,Segoe UI,Roboto,Arial,sans-serif;'
|
||||
'max-width:900px;margin:24px auto;padding:16px 20px;border:1px solid #fecaca;'
|
||||
'border-radius:12px;background:#fff5f5;color:#991b1b;">'
|
||||
'<h3 style="margin:0 0 8px;font-size:18px;">Błąd połączenia/zapytania MySQL</h3>'
|
||||
'<p style="margin:0;">{}</p></div>'.format(str(e))
|
||||
)
|
||||
sys.exit(1)
|
||||
|
||||
# Preagregaty
|
||||
try:
|
||||
results = compute_preaggregates(rows)
|
||||
serialized = serialize_for_ai(results)
|
||||
except Exception as e:
|
||||
sys.stdout.write(
|
||||
'<div style="font-family:system-ui,-apple-system,Segoe UI,Roboto,Arial,sans-serif;'
|
||||
'max-width:900px;margin:24px auto;padding:16px 20px;border:1px solid #fecaca;'
|
||||
'border-radius:12px;background:#fff5f5;color:#991b1b;">'
|
||||
'<h3 style="margin:0 0 8px;font-size:18px;">Błąd preagregacji</h3>'
|
||||
'<p style="margin:0;">{}</p></div>'.format(str(e))
|
||||
)
|
||||
sys.exit(1)
|
||||
|
||||
# KPI (na podstawie daily_sales)
|
||||
daily = serialized.get("daily_sales") or []
|
||||
total_sales = sum((r.get("sales") or 0) for r in daily)
|
||||
total_qty = sum((r.get("qty") or 0) for r in daily)
|
||||
total_docs = sum((r.get("docs") or 0) for r in daily)
|
||||
asp = (total_sales / total_qty) if total_qty else None
|
||||
kpis = [
|
||||
("Sprzedaż (PLN)", fmt_money(total_sales)),
|
||||
("Ilość (szt.)", "{:,.0f}".format(total_qty).replace(",", " ")),
|
||||
("Dokumenty", "{:,.0f}".format(total_docs).replace(",", " ")),
|
||||
("ASP (PLN/szt.)", fmt_money(asp) if asp is not None else "—"),
|
||||
]
|
||||
|
||||
# Sekcje HTML z Twoich preagregatów
|
||||
top_prod = serialized.get("top10_products_by_sales") or []
|
||||
top_cli = serialized.get("top10_customers_by_sales") or []
|
||||
prod_tbl = html_table(top_prod, title="Top 10 produktów (po sprzedaży)", max_rows=10)
|
||||
cust_tbl = html_table(top_cli, title="Top 10 klientów (po sprzedaży)", max_rows=10)
|
||||
|
||||
# Dane do AI
|
||||
ai_data = build_ai_payload(serialized, period_label)
|
||||
ai_json = json.dumps(ai_data, ensure_ascii=False, separators=(",", ":"), default=str)
|
||||
|
||||
# Wołanie AI (opcjonalne)
|
||||
ai_section = ""
|
||||
if api_key:
|
||||
try:
|
||||
ai_section = call_openai_chat(
|
||||
api_key=api_key,
|
||||
model=model,
|
||||
system_prompt=system_prompt,
|
||||
user_payload_json=ai_json,
|
||||
temperature=0.3,
|
||||
connect_timeout=10,
|
||||
read_timeout=90,
|
||||
max_retries=3,
|
||||
)
|
||||
except Exception as e:
|
||||
ai_section = (
|
||||
'<div style="color:#991b1b;background:#fff5f5;border:1px solid #fecaca;'
|
||||
'padding:10px;border-radius:8px;">Błąd wywołania AI: {}</div>'.format(str(e))
|
||||
)
|
||||
|
||||
# Finalny HTML (jeden <div>)
|
||||
report_html = render_report_html(
|
||||
period_label=period_label,
|
||||
kpis=kpis,
|
||||
parts=[prod_tbl, cust_tbl],
|
||||
ai_section=ai_section
|
||||
)
|
||||
|
||||
sys.stdout.write(report_html)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
main()
|
||||
|
||||
@@ -117,8 +117,8 @@ def top10_customers_by_sales(df: pd.DataFrame) -> pd.DataFrame:
|
||||
|
||||
# ------------------- Runner -------------------
|
||||
|
||||
# def compute_preaggregates(rows: List[tuple]) -> dict[str, pd.DataFrame]:
|
||||
def compute_preaggregates(rows):
|
||||
def compute_preaggregates(rows: List[tuple]) -> dict[str, pd.DataFrame]:
|
||||
#def compute_preaggregates(rows):
|
||||
"""Główny punkt wejścia: rows -> df -> uruchom wszystkie agregatory."""
|
||||
df = to_df(rows)
|
||||
# results: dict[str, pd.DataFrame] = {}
|
||||
|
||||
@@ -1,44 +1,28 @@
|
||||
<?php
|
||||
$bins = [
|
||||
'/var/www/venv/bin/python',
|
||||
'/usr/bin/python3.11',
|
||||
'/usr/bin/python3.10',
|
||||
'/usr/bin/python3.9',
|
||||
'/usr/local/bin/python3.11',
|
||||
'/usr/local/bin/python3.10',
|
||||
'/usr/local/bin/python3.9',
|
||||
'/usr/bin/python3',
|
||||
'python3',
|
||||
];
|
||||
foreach ($bins as $b) {
|
||||
$out = []; $ret = 0;
|
||||
exec("$b -V 2>&1", $out, $ret);
|
||||
echo htmlspecialchars("$b -> ".($out ? implode(' ', $out) : "not found / not executable")." (ret=$ret)")."<br>";
|
||||
$python = '/usr/local/bin/python3';
|
||||
$script = '/var/www/html/modules/EcmInvoiceOuts/ai/analysisAI.py';
|
||||
$cmd = escapeshellcmd("$python $script");
|
||||
|
||||
// odczyt
|
||||
$output = [];
|
||||
$returnVar = 0;
|
||||
exec($cmd . ' 2>&1', $output, $returnVar);
|
||||
$body = implode("\n", $output);
|
||||
|
||||
// błąd Pythona
|
||||
if ($returnVar !== 0) {
|
||||
// pokaż błąd jako tekst
|
||||
while (ob_get_level()) { ob_end_clean(); }
|
||||
header_remove();
|
||||
header('Content-Type: text/plain; charset=utf-8');
|
||||
http_response_code(500);
|
||||
echo "Error running Python script:\n".$body;
|
||||
exit;
|
||||
}
|
||||
//$python = '/usr/bin/python3';
|
||||
//$script = '/var/www/html/modules/EcmInvoiceOuts/ai/analysisAI.py';
|
||||
//$cmd = escapeshellcmd("$python $script");
|
||||
//
|
||||
//// odczyt
|
||||
//$output = [];
|
||||
//$returnVar = 0;
|
||||
//exec($cmd . ' 2>&1', $output, $returnVar);
|
||||
//$body = implode("\n", $output);
|
||||
//
|
||||
//// błąd Pythona
|
||||
//if ($returnVar !== 0) {
|
||||
// // pokaż błąd jako tekst
|
||||
// while (ob_get_level()) { ob_end_clean(); }
|
||||
// header_remove();
|
||||
// header('Content-Type: text/plain; charset=utf-8');
|
||||
// http_response_code(500);
|
||||
// echo "Error running Python script:\n".$body;
|
||||
// exit;
|
||||
//}
|
||||
//
|
||||
//// --- WYMUSZENIE RENDEROWANIA HTML ---
|
||||
//while (ob_get_level()) { ob_end_clean(); } // wyczyść wszystkie bufory
|
||||
//header_remove(); // usuń nagłówki ustawione wcześniej przez framework
|
||||
//header('Content-Type: text/html; charset=utf-8');
|
||||
//echo $body;
|
||||
//exit; // ZATRZYMAJ framework (np. SugarCRM), żeby nic już nie dopisywał
|
||||
|
||||
// --- WYMUSZENIE RENDEROWANIA HTML ---
|
||||
while (ob_get_level()) { ob_end_clean(); } // wyczyść wszystkie bufory
|
||||
header_remove(); // usuń nagłówki ustawione wcześniej przez framework
|
||||
header('Content-Type: text/html; charset=utf-8');
|
||||
echo $body;
|
||||
exit; // ZATRZYMAJ framework (np. SugarCRM), żeby nic już nie dopisywał
|
||||
|
||||
Reference in New Issue
Block a user