script preaggregates.py
This commit is contained in:
74
modules/EcmInvoiceOuts/ai/analysisAI.py
Normal file
74
modules/EcmInvoiceOuts/ai/analysisAI.py
Normal file
@@ -0,0 +1,74 @@
|
||||
#!/usr/bin/env python3
|
||||
import os, sys, json
|
||||
from preaggregates import compute_preaggregates, serialize_for_ai
|
||||
|
||||
try:
|
||||
import mysql.connector
|
||||
except Exception as e:
|
||||
sys.stderr.write("MySQL connector not available: %s\n" % e)
|
||||
sys.exit(1)
|
||||
|
||||
def getenv(key, default=None):
|
||||
return os.environ.get(key, default)
|
||||
|
||||
def main():
|
||||
cfg = {
|
||||
#"host": getenv("MYSQL_HOST", "twinpol-mysql56"),
|
||||
"host": getenv("MYSQL_HOST", "localhost"),
|
||||
"user": getenv("MYSQL_USER", "root"),
|
||||
"password": getenv("MYSQL_PASSWORD", "rootpassword"),
|
||||
"database": getenv("MYSQL_DATABASE", "preDb_0dcc87940d3655fa574b253df04ca1c3"),
|
||||
"port": int(getenv("MYSQL_PORT", "3306")),
|
||||
}
|
||||
|
||||
try:
|
||||
cnx = mysql.connector.connect(**cfg)
|
||||
cur = cnx.cursor()
|
||||
#cur.execute("SELECT COUNT(*) FROM ecminvoiceouts WHERE YEAR(register_date)=2025")
|
||||
cur.execute("""
|
||||
SELECT i.document_no,
|
||||
i.parent_name,
|
||||
DATE(i.register_date) AS register_date,
|
||||
ii.code,
|
||||
ii.name,
|
||||
ii.quantity,
|
||||
ii.total_netto
|
||||
FROM ecminvoiceoutitems AS ii
|
||||
JOIN ecminvoiceouts AS i ON i.id = ii.ecminvoiceout_id
|
||||
WHERE i.register_date >= %s
|
||||
AND i.register_date < %s
|
||||
AND i.type = %s
|
||||
""", ("2025-07-01", "2025-08-01", "normal"))
|
||||
rows = cur.fetchall()
|
||||
|
||||
results = compute_preaggregates(rows)
|
||||
|
||||
# 2) podejrzyj wyniki
|
||||
# ['daily_sales', 'product_summary', 'customer_summary', 'product_daily',
|
||||
# 'top10_products_by_sales', 'top10_customers_by_sales']
|
||||
print(">> available tables:", list(results.keys()))
|
||||
# print(results["daily_sales"].head(10))
|
||||
# print(results["product_summary"])
|
||||
# print(results["customer_summary"])
|
||||
# print(results["product_daily"])
|
||||
# print(results["top10_products_by_sales"])
|
||||
# print(results["top10_customers_by_sales"])
|
||||
results["daily_sales"].head(10)
|
||||
results["product_summary"]
|
||||
results["customer_summary"]
|
||||
results["product_daily"]
|
||||
results["top10_products_by_sales"]
|
||||
results["top10_customers_by_sales"]
|
||||
|
||||
# 3) zserializuj do lekkiego JSON-a (np. do AI lub do pliku)
|
||||
ai_payload = serialize_for_ai(results)
|
||||
print(json.dumps(ai_payload, ensure_ascii=False, indent=2, default=str))
|
||||
|
||||
cur.close()
|
||||
cnx.close()
|
||||
except Exception as e:
|
||||
sys.stderr.write("Query error: %s\n" % e)
|
||||
sys.exit(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -1,21 +0,0 @@
|
||||
<?php
|
||||
// modules/EcmInvoiceOuts/ai/enqueue.php
|
||||
$from = $_POST['from'] ?? null;
|
||||
$to = $_POST['to'] ?? null;
|
||||
$currency = $_POST['currency'] ?? 'PLN';
|
||||
$axis = $_POST['axis'] ?? 'sku_id';
|
||||
$label = $_POST['label'] ?? 'sku_name';
|
||||
$top_n = (int)($_POST['top_n'] ?? 50);
|
||||
$goal = $_POST['goal'] ?? 'porównanie Q2 vs Q1';
|
||||
|
||||
if (!$from || !$to) { http_response_code(400); exit('Missing from/to'); }
|
||||
|
||||
$base = __DIR__;
|
||||
@mkdir("$base/queue", 0777, true);
|
||||
|
||||
$payload = compact('from','to','currency','axis','label','top_n','goal');
|
||||
$id = bin2hex(random_bytes(8));
|
||||
file_put_contents("$base/queue/$id.json", json_encode($payload, JSON_UNESCAPED_UNICODE));
|
||||
|
||||
header('Content-Type: application/json; charset=utf-8');
|
||||
echo json_encode(['job_id' => $id]);
|
||||
150
modules/EcmInvoiceOuts/ai/preaggregates.py
Normal file
150
modules/EcmInvoiceOuts/ai/preaggregates.py
Normal file
@@ -0,0 +1,150 @@
|
||||
# --- preagg.py ---------------------------------------------------------------
|
||||
from __future__ import annotations
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from typing import Callable, Dict, List
|
||||
|
||||
# Rejestr agregatorów: name -> funkcja(df) -> DataFrame
|
||||
# AGGREGATORS: Dict[str, Callable[[pd.DataFrame], pd.DataFrame]] = {}
|
||||
AGGREGATORS = {}
|
||||
def aggregator(name: str):
|
||||
"""Dekorator do łatwego rejestrowania nowych agregatorów."""
|
||||
def _wrap(func: Callable[[pd.DataFrame], pd.DataFrame]):
|
||||
AGGREGATORS[name] = func
|
||||
return func
|
||||
return _wrap
|
||||
|
||||
def to_df(rows: List[tuple]) -> pd.DataFrame:
|
||||
"""Konwersja rows -> DataFrame (dopasuj nazwy kolumn do SELECT-a)."""
|
||||
cols = [
|
||||
"document_no",
|
||||
"customer_name", # i.parent_name
|
||||
"register_date", # DATE(i.register_date)
|
||||
"product_code", # ii.code
|
||||
"product_name", # ii.name
|
||||
"quantity", # ii.quantity
|
||||
"total_netto", # ii.total_netto (wartość sprzedaży netto)
|
||||
]
|
||||
df = pd.DataFrame(rows, columns=cols)
|
||||
if df.empty:
|
||||
return df
|
||||
# Typy
|
||||
df["register_date"] = pd.to_datetime(df["register_date"])
|
||||
df["quantity"] = pd.to_numeric(df["quantity"], errors="coerce").fillna(0.0)
|
||||
df["total_netto"] = pd.to_numeric(df["total_netto"], errors="coerce").fillna(0.0)
|
||||
# ASP (Average Selling Price) – średnia cena pozycji
|
||||
# Uwaga: ASP lepiej liczyć ważoną średnią w agregatach; tu to „unit price” na pozycji.
|
||||
df["unit_price"] = np.where(df["quantity"] != 0, df["total_netto"] / df["quantity"], np.nan)
|
||||
return df
|
||||
|
||||
# ------------------- Wbudowane agregatory (możesz dopisywać kolejne) -------------------
|
||||
|
||||
@aggregator("daily_sales")
|
||||
def daily_sales(df: pd.DataFrame) -> pd.DataFrame:
|
||||
"""Dzienna sprzedaż: ilość, wartość, liczba dokumentów, ASP ważony."""
|
||||
if df.empty:
|
||||
return df
|
||||
g = df.groupby(pd.Grouper(key="register_date", freq="D"))
|
||||
out = g.agg(
|
||||
qty=("quantity", "sum"),
|
||||
sales=("total_netto", "sum"),
|
||||
docs=("document_no", "nunique"),
|
||||
).reset_index()
|
||||
# ASP ważony (sales / qty)
|
||||
out["asp"] = np.where(out["qty"] != 0, out["sales"] / out["qty"], np.nan)
|
||||
# Zmiana d/d
|
||||
out["sales_pct_change_dod"] = out["sales"].pct_change()
|
||||
# Rolling 7
|
||||
out["sales_rolling7"] = out["sales"].rolling(7, min_periods=1).mean()
|
||||
return out
|
||||
|
||||
@aggregator("product_summary")
|
||||
def product_summary(df: pd.DataFrame) -> pd.DataFrame:
|
||||
"""Podsumowanie po produkcie."""
|
||||
if df.empty:
|
||||
return df
|
||||
g = df.groupby(["product_code", "product_name"], as_index=False).agg(
|
||||
qty=("quantity", "sum"),
|
||||
sales=("total_netto", "sum"),
|
||||
docs=("document_no", "nunique"),
|
||||
)
|
||||
g["asp_weighted"] = np.where(g["qty"] != 0, g["sales"] / g["qty"], np.nan)
|
||||
# Udział w koszyku (mix % po wartości)
|
||||
total_sales = g["sales"].sum()
|
||||
g["mix_share_sales"] = np.where(total_sales > 0, g["sales"] / total_sales, 0.0)
|
||||
return g.sort_values("sales", ascending=False)
|
||||
|
||||
@aggregator("customer_summary")
|
||||
def customer_summary(df: pd.DataFrame) -> pd.DataFrame:
|
||||
"""Podsumowanie po kliencie."""
|
||||
if df.empty:
|
||||
return df
|
||||
g = df.groupby(["customer_name"], as_index=False).agg(
|
||||
qty=("quantity", "sum"),
|
||||
sales=("total_netto", "sum"),
|
||||
docs=("document_no", "nunique"),
|
||||
distinct_products=("product_code", "nunique"),
|
||||
)
|
||||
g["asp_weighted"] = np.where(g["qty"] != 0, g["sales"] / g["qty"], np.nan)
|
||||
return g.sort_values("sales", ascending=False)
|
||||
|
||||
@aggregator("product_daily")
|
||||
def product_daily(df: pd.DataFrame) -> pd.DataFrame:
|
||||
"""Dzienna sprzedaż per produkt (przydatne do trendów/rollingów w AI)."""
|
||||
if df.empty:
|
||||
return df
|
||||
g = (df
|
||||
.groupby([pd.Grouper(key="register_date", freq="D"), "product_code", "product_name"], as_index=False)
|
||||
.agg(qty=("quantity", "sum"),
|
||||
sales=("total_netto", "sum")))
|
||||
# Rolling 7 per produkt
|
||||
g = g.sort_values(["product_code", "register_date"])
|
||||
g["sales_rolling7"] = g.groupby("product_code")["sales"].transform(lambda s: s.rolling(7, min_periods=1).mean())
|
||||
g["sales_pct_change_dod"] = g.groupby("product_code")["sales"].pct_change()
|
||||
return g
|
||||
|
||||
@aggregator("top10_products_by_sales")
|
||||
def top10_products_by_sales(df: pd.DataFrame) -> pd.DataFrame:
|
||||
"""Top 10 produktów po wartości sprzedaży (okres z wejścia)."""
|
||||
base = AGGREGATORS["product_summary"](df)
|
||||
return base.nlargest(10, "sales")
|
||||
|
||||
@aggregator("top10_customers_by_sales")
|
||||
def top10_customers_by_sales(df: pd.DataFrame) -> pd.DataFrame:
|
||||
"""Top 10 klientów po wartości sprzedaży."""
|
||||
base = AGGREGATORS["customer_summary"](df)
|
||||
return base.nlargest(10, "sales")
|
||||
|
||||
# ------------------- Runner -------------------
|
||||
|
||||
# def compute_preaggregates(rows: List[tuple]) -> dict[str, pd.DataFrame]:
|
||||
def compute_preaggregates(rows):
|
||||
"""Główny punkt wejścia: rows -> df -> uruchom wszystkie agregatory."""
|
||||
df = to_df(rows)
|
||||
# results: dict[str, pd.DataFrame] = {}
|
||||
results = {}
|
||||
for name, fn in AGGREGATORS.items():
|
||||
try:
|
||||
results[name] = fn(df).copy()
|
||||
except Exception as e:
|
||||
# Niech agregat nie wysadza całości – zapisz pusty DF + info
|
||||
results[name] = pd.DataFrame({"_error": [str(e)], "_aggregator": [name]})
|
||||
return results
|
||||
|
||||
def serialize_for_ai(results: dict[str, pd.DataFrame]) -> dict[str, list[dict]]:
|
||||
"""
|
||||
Konwersja wyników do lekkiego JSON-a (listy rekordów),
|
||||
który łatwo przekazać do modelu AI lub zapisać do pliku.
|
||||
"""
|
||||
# out: dict[str, list[dict]] = {}
|
||||
out = {}
|
||||
for name, df in results.items():
|
||||
if df is None or df.empty:
|
||||
out[name] = []
|
||||
else:
|
||||
# zaokrąglij liczby dla czytelności (opcjonalnie)
|
||||
df2 = df.copy()
|
||||
for c in df2.select_dtypes(include=[np.number]).columns:
|
||||
df2[c] = df2[c].round(6)
|
||||
out[name] = df2.to_dict(orient="records")
|
||||
return out
|
||||
@@ -1,12 +0,0 @@
|
||||
<?php
|
||||
// modules/EcmInvoiceOuts/ai/result.php
|
||||
$base = __DIR__;
|
||||
$files = glob("$base/out/*.json");
|
||||
rsort($files);
|
||||
$latest = $files[0] ?? null;
|
||||
|
||||
if (!$latest) { http_response_code(404); exit('Brak wyników'); }
|
||||
|
||||
$payload = json_decode(file_get_contents($latest), true);
|
||||
header('Content-Type: application/json; charset=utf-8');
|
||||
echo json_encode($payload, JSON_UNESCAPED_UNICODE | JSON_PRETTY_PRINT);
|
||||
@@ -1,37 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
import os
|
||||
import sys
|
||||
|
||||
try:
|
||||
import mysql.connector
|
||||
except Exception as e:
|
||||
sys.stderr.write("MySQL connector not available: %s\n" % e)
|
||||
sys.exit(1)
|
||||
|
||||
def getenv(key, default=None):
|
||||
return os.environ.get(key, default)
|
||||
|
||||
def main():
|
||||
cfg = {
|
||||
"host": getenv("MYSQL_HOST", "twinpol-mysql56"),
|
||||
"user": getenv("MYSQL_USER", "root"),
|
||||
"password": getenv("MYSQL_PASSWORD", "rootpassword"),
|
||||
"database": getenv("MYSQL_DATABASE", "preDb_0dcc87940d3655fa574b253df04ca1c3"),
|
||||
"port": int(getenv("MYSQL_PORT", "3306")),
|
||||
}
|
||||
|
||||
try:
|
||||
cnx = mysql.connector.connect(**cfg)
|
||||
cur = cnx.cursor()
|
||||
cur.execute("SELECT COUNT(*) FROM ecminvoiceouts WHERE YEAR(register_date)=2025")
|
||||
row = cur.fetchone()
|
||||
count = int(row[0]) if row and row[0] is not None else 0
|
||||
print(count)
|
||||
cur.close()
|
||||
cnx.close()
|
||||
except Exception as e:
|
||||
sys.stderr.write("Query error: %s\n" % e)
|
||||
sys.exit(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -1,141 +0,0 @@
|
||||
# worker.py
|
||||
import os, json, io, uuid
|
||||
import datetime as dt
|
||||
from typing import Dict, Any, List
|
||||
|
||||
import polars as pl
|
||||
import pymysql
|
||||
from tenacity import retry, wait_exponential, stop_after_attempt
|
||||
from dotenv import load_dotenv
|
||||
|
||||
load_dotenv()
|
||||
|
||||
AI_MODEL = os.getenv("AI_MODEL", "gpt-5-pro")
|
||||
AI_API_KEY = os.getenv("AI_API_KEY")
|
||||
|
||||
MYSQL_CONF = dict(
|
||||
host=os.getenv("MYSQL_HOST", "localhost"),
|
||||
user=os.getenv("MYSQL_USER", "root"),
|
||||
password=os.getenv("MYSQL_PASSWORD", ""),
|
||||
database=os.getenv("MYSQL_DB", "sales"),
|
||||
cursorclass=pymysql.cursors.DictCursor,
|
||||
)
|
||||
|
||||
def mysql_query(sql: str, params: tuple = ()) -> pl.DataFrame:
|
||||
conn = pymysql.connect(**MYSQL_CONF)
|
||||
try:
|
||||
with conn.cursor() as cur:
|
||||
cur.execute(sql, params)
|
||||
rows = cur.fetchall()
|
||||
finally:
|
||||
conn.close()
|
||||
return pl.from_dicts(rows)
|
||||
|
||||
def to_csv(df: pl.DataFrame) -> str:
|
||||
buf = io.StringIO()
|
||||
df.write_csv(buf)
|
||||
return buf.getvalue()
|
||||
|
||||
SQL_KPIS_DAILY = """
|
||||
SELECT DATE(invoice_date) AS d,
|
||||
SUM(net_amount) AS revenue,
|
||||
SUM(quantity) AS qty,
|
||||
ROUND(100*SUM(net_amount - cost_amount)/NULLIF(SUM(net_amount),0), 2) AS gross_margin_pct,
|
||||
ROUND(100*SUM(discount_amount)/NULLIF(SUM(gross_amount),0), 2) AS discount_pct
|
||||
FROM fact_invoices
|
||||
WHERE invoice_date BETWEEN %s AND %s
|
||||
GROUP BY 1
|
||||
ORDER BY 1;
|
||||
"""
|
||||
|
||||
SQL_TOP_SEGMENTS = """
|
||||
SELECT {axis} AS key,
|
||||
ANY_VALUE({label}) AS label,
|
||||
SUM(net_amount) AS revenue,
|
||||
SUM(quantity) AS qty,
|
||||
ROUND(100*SUM(net_amount - cost_amount)/NULLIF(SUM(net_amount),0), 2) AS gross_margin_pct,
|
||||
ROUND(100*(SUM(net_amount) - LAG(SUM(net_amount)) OVER(ORDER BY 1))/
|
||||
NULLIF(LAG(SUM(net_amount)) OVER(ORDER BY 1),0), 2) AS trend_30d
|
||||
FROM fact_invoices
|
||||
WHERE invoice_date BETWEEN DATE_SUB(%s, INTERVAL 60 DAY) AND %s
|
||||
GROUP BY 1
|
||||
ORDER BY revenue DESC
|
||||
LIMIT %s;
|
||||
"""
|
||||
|
||||
class AIClient:
|
||||
def __init__(self, api_key: str): self.api_key = api_key
|
||||
@retry(wait=wait_exponential(multiplier=1, min=1, max=20), stop=stop_after_attempt(6))
|
||||
def structured_analysis(self, prompt: str, schema: Dict[str, Any]) -> Dict[str, Any]:
|
||||
# TODO: PODMIEŃ na realne wywołanie modelu z "Structured Outputs"
|
||||
raise NotImplementedError("Wire your model SDK here")
|
||||
|
||||
@retry(wait=wait_exponential(multiplier=1, min=1, max=20), stop=stop_after_attempt(6))
|
||||
def batch_submit(self, ndjson_lines: List[str]) -> str:
|
||||
# TODO: PODMIEŃ na rzeczywiste Batch API
|
||||
raise NotImplementedError
|
||||
|
||||
def run_online(from_date: str, to_date: str, currency: str, axis: str, label: str, top_n: int, goal: str) -> Dict[str, Any]:
|
||||
kpis = mysql_query(SQL_KPIS_DAILY, (from_date, to_date))
|
||||
top = mysql_query(SQL_TOP_SEGMENTS.format(axis=axis, label=label), (from_date, to_date, top_n))
|
||||
|
||||
csv_blocks = ("## kpis_daily\n" + to_csv(kpis) + "\n\n" +
|
||||
"## top_segments\n" + to_csv(top))
|
||||
|
||||
with open(os.path.join(os.path.dirname(__file__), "sales-analysis.schema.json"), "r", encoding="utf-8") as f:
|
||||
schema = json.load(f)
|
||||
|
||||
prompt = f"""
|
||||
Jesteś analitykiem sprzedaży. Otrzymasz: (a) kontekst, (b) dane.
|
||||
Zwróć **wyłącznie** JSON zgodny ze schema.
|
||||
|
||||
Kontekst:
|
||||
- Waluta: {currency}
|
||||
- Zakres: {from_date} → {to_date}
|
||||
- Cel: {goal}
|
||||
- Poziom segmentacji: {axis}
|
||||
|
||||
Dane (CSV):
|
||||
{csv_blocks}
|
||||
|
||||
Wskazówki:
|
||||
- Użyj danych jak są (nie wymyślaj liczb).
|
||||
- W meta.scope wpisz opis zakresu i segmentacji.
|
||||
- Jeśli brak anomalii – anomalies: [].
|
||||
- Kwoty do 2 miejsc, procenty do 1.
|
||||
"""
|
||||
|
||||
ai = AIClient(AI_API_KEY)
|
||||
result = ai.structured_analysis(prompt, schema)
|
||||
|
||||
out_dir = os.path.join(os.path.dirname(__file__), "out")
|
||||
os.makedirs(out_dir, exist_ok=True)
|
||||
out_path = os.path.join(out_dir, f"{uuid.uuid4()}.json")
|
||||
with open(out_path, "w", encoding="utf-8") as f:
|
||||
json.dump(result, f, ensure_ascii=False)
|
||||
return {"status": "ok", "path": out_path}
|
||||
|
||||
def run_batch(from_date: str, to_date: str, axis: str, label: str):
|
||||
# Zgodnie z blueprintem – generujemy linie NDJSON (skrót; pełny wariant w PDF)
|
||||
# TODO: dodać realne wywołania batch_submit i zapisać ID/stan
|
||||
raise NotImplementedError("Implement batch per blueprint")
|
||||
|
||||
if __name__ == "__main__":
|
||||
import argparse
|
||||
p = argparse.ArgumentParser()
|
||||
sub = p.add_subparsers(dest="cmd")
|
||||
o = sub.add_parser("online")
|
||||
o.add_argument("from_date"); o.add_argument("to_date"); o.add_argument("currency")
|
||||
o.add_argument("axis", choices=["sku_id","client_id","region_code"])
|
||||
o.add_argument("label"); o.add_argument("top_n", type=int, nargs="?", default=50)
|
||||
o.add_argument("goal")
|
||||
b = sub.add_parser("batch")
|
||||
b.add_argument("from_date"); b.add_argument("to_date"); b.add_argument("axis"); b.add_argument("label")
|
||||
args = p.parse_args()
|
||||
|
||||
if args.cmd == "online":
|
||||
print(run_online(args.from_date, args.to_date, args.currency, args.axis, args.label, args.top_n, args.goal))
|
||||
elif args.cmd == "batch":
|
||||
print(run_batch(args.from_date, args.to_date, args.axis, args.label))
|
||||
else:
|
||||
p.print_help()
|
||||
@@ -1,16 +1,44 @@
|
||||
<?php
|
||||
// Runs the Python script, waits for completion, and returns its output.
|
||||
|
||||
$cmd = 'python3 /var/www/html/modules/EcmInvoiceOuts/ai/test.py';
|
||||
$output = [];
|
||||
$returnVar = 0;
|
||||
exec($cmd . ' 2>&1', $output, $returnVar);
|
||||
|
||||
if ($returnVar !== 0) {
|
||||
http_response_code(500);
|
||||
echo "Error running Python script:\n" . implode("\n", $output);
|
||||
exit;
|
||||
$bins = [
|
||||
'/var/www/venv/bin/python',
|
||||
'/usr/bin/python3.11',
|
||||
'/usr/bin/python3.10',
|
||||
'/usr/bin/python3.9',
|
||||
'/usr/local/bin/python3.11',
|
||||
'/usr/local/bin/python3.10',
|
||||
'/usr/local/bin/python3.9',
|
||||
'/usr/bin/python3',
|
||||
'python3',
|
||||
];
|
||||
foreach ($bins as $b) {
|
||||
$out = []; $ret = 0;
|
||||
exec("$b -V 2>&1", $out, $ret);
|
||||
echo htmlspecialchars("$b -> ".($out ? implode(' ', $out) : "not found / not executable")." (ret=$ret)")."<br>";
|
||||
}
|
||||
|
||||
// Expect a single line with the count
|
||||
echo trim(implode("\n", $output));
|
||||
//$python = '/usr/bin/python3';
|
||||
//$script = '/var/www/html/modules/EcmInvoiceOuts/ai/analysisAI.py';
|
||||
//$cmd = escapeshellcmd("$python $script");
|
||||
//
|
||||
//// odczyt
|
||||
//$output = [];
|
||||
//$returnVar = 0;
|
||||
//exec($cmd . ' 2>&1', $output, $returnVar);
|
||||
//$body = implode("\n", $output);
|
||||
//
|
||||
//// błąd Pythona
|
||||
//if ($returnVar !== 0) {
|
||||
// // pokaż błąd jako tekst
|
||||
// while (ob_get_level()) { ob_end_clean(); }
|
||||
// header_remove();
|
||||
// header('Content-Type: text/plain; charset=utf-8');
|
||||
// http_response_code(500);
|
||||
// echo "Error running Python script:\n".$body;
|
||||
// exit;
|
||||
//}
|
||||
//
|
||||
//// --- WYMUSZENIE RENDEROWANIA HTML ---
|
||||
//while (ob_get_level()) { ob_end_clean(); } // wyczyść wszystkie bufory
|
||||
//header_remove(); // usuń nagłówki ustawione wcześniej przez framework
|
||||
//header('Content-Type: text/html; charset=utf-8');
|
||||
//echo $body;
|
||||
//exit; // ZATRZYMAJ framework (np. SugarCRM), żeby nic już nie dopisywał
|
||||
|
||||
Reference in New Issue
Block a user